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Abstract 

   This paper gives an overview on the most 

important classic algorithms for pairwise testing. 

All algorithms use combinatorial strategies to find 

a test set, which covers pairwise combinations of 

system parameters (for example system settings or 

inputs from the user). The idea of pairwise testing 

is already 20 years old but for the last five years 

its popularity has been rising extremely. The 

reason is that testers have to face more complex 

software projects with the same time target.  
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1.  Introduction 

   Pairwise testing (two-way testing) has its root in 

empiric results [1]. This shows that most failures 

are caused by one parameter (single-mode fault) 

or by the interaction of two parameters (double-

mode fault). It is not necessary to test all possible 

values of different parameters in all combinations. 

It is sufficient to test each parameter in each of its 

states, tested in pair with every other parameter in 

each of its states. In certain circumstances an 

enormous decrease of test cases is possible. If 

there is a table with 75 fields and each field is able 

to have the values 0 and 1, there are 2
75

 possible 

test cases. Using pair wise testing reduces the 

number of test cases to 28. To clarify how 

pairwise testing is working, see the following 

example. 

Precondition: 

 Parameter A has values  A1, A2 and A3 

 Parameter B has values  B1 ,B2 and B3 

 Parameter C has values  C1 und C2 

   If parameter A, B and C are tested in all possible 

combinations, there are 18 test sets.  

Test case A B C 

1 A1 B1 C1 

2 A2 B1 C1 

3  A3 B1 C1 

4 A1 B2 C1 

5 A2 B2 C1 

6 A3 B2 C1 

7 A1 B3 C1 

8 A2 B3 C1 

9 A3 B3 C1 

10 A1 B1 C2 

11 A2 B1 C2 

12  A3 B1 C2 

13 A1 B2 C2 

14 A2 B2 C2 

15 A3 B2 C2 

16 A1 B3 C2 

17 A2 B3 C2 

18 A3 B3 C2 

Table 1: All possible combinations 

   By only taking single-mode faults and double-

mode faults into consideration, 9 test cases are 

have to be executed. 

Test case A B C 

1 A1 B1 C1 

5 A2 B2 C1 

6 A3 B2 C1 

8 A2 B3 C1 

9 A3 B3 C1 

11 A2 B1 C2 

12  A3 B1 C2 

13 A1 B2 C2 

16 A1 B3 C2 

Table 2: Reduced number of test cases 



2.  Classic algorithms 

   The algorithms (so-called combination 

strategies), which are used to minimize the 

number of test cases, are divided in three 

categories: 

Figure 1: Overview[6] 

   Non-deterministic combination strategies 

contain a chance to extent. This chance causes 

different output (results) after the same input. The 

random algorithm displays the strongest kind of 

non-deterministic strategies. Another subcategory 

is the heuristic algorithm (for example 

implemented in AETG
1
). 

   Deterministic algorithm is the second 

subcategory of combination strategies. Here the 

same input always leads to the same output. Many 

algorithms, which belong to the determinic 

subcategory base on orthogonal arrays[1]. Further 

elements of deterministic combination strategies 

are the  iterative and parameter-based 

strategies[2]. 

   The third and last subcategory is called 

compound strategies. Here all algorithms are 

added, which have deterministic parts as well as 

non-deterministic parts. 

3.  Non-deterministic algorithms 

3.1 Heuristic (t-wise
2
)     

Assume test cases t1 – ti-1 already selected. 

                                                                 
1
AETG (Automated Efficient Test Generator) is a 

trademark of Telcordia Technologies. 
2
 t is an arbitrary number. 

Let Q be the set of all possible combinations not 

yet selected. 

Let UC be a set of all pairs of values of any two 

parameters that are not yet covered by the test 

cases t1 – ti-1. 

 

A) 

 Select ti by finding the combination that 

covers the most pairs of UC. If more than 

one combination that covers the same 

amount of pairs, select the first one 

encountered. 

 Remove the selected combination from Q. 

 Remove the covered pairs from UC. 

B) 

 Repeat until UC is empty. 

Figure 2: Heuristic t-wise algorithm 

 

  

   Assume test cases t1 – ti-1 already selected. 

Let UC be a set of all pairs of values of any two 

parameters that are not yet covered by the test 

cases t1 – ti-1. 

 

A) Select candidates for ti by 

1. Selecting the variable and the value included 

in the most pairs in UC. 

2. Making a random order of the rest of the 

variables. 

3. For each variable, in the sequence determined 

by step two, select the value included in most 

pairs of UC. 

B) Repeat steps 1-3 k times and let ti be the test 

case that covers the most pairs in UC. 

 

Repeat until UC is empty. 

Figure 3: Heuristic t-wise algorithm [3] 

 

3.2 Random 

   This subcategory of the non-deterministic 

strategies only reduces test cases by chance. So 

there is no pseudocode avaiable. 

4. Deterministic algorithms 

4.1 Orthogonal Arrays[1,5] 

   The use of orthogonal arrays is an established 

instrument in statistical experiments. It was 



developed by Taguchi Gen‟ichi. The foundation  

of  orthogonal arrays are n*n latin squares. The 

most important thing (and the main property of    

latin squares) is that an entry must not appear 

twice in a row or a column. By merging k-2 (k is 

the number of parameters) latin squares, an 

orthogonal array is created.  

Notation:  

O(c,k,n,t) is an orthogonal array, where 

 c is the number of rows. Each row 

represents a test case. 

 k represents the number of columns 

(number of parameters). 

 each parameter has the maximum number 

of n values 

 t is the strenght of the array. That means 

that in every submatrix c*t each n
t
 tuble 

appears just one time (in the case of 

pairwise testing t=2). 

   The clarify how to work with orthogonal arrays, 

assume three parameters (a,b,c) with three values 

each. The first parameter (a) takes the value of the 

row, the second takes the value of the column an 

the third takes the value, which is displayed in the 

matrix. 

   First build the matrix (as per rules above one 

3*3 matrix is needed) 

1 2 3 

2 3 1 

3 1 2 

Figure 4: Orthogonal 3*3 array 

    

   For example the highlighted entry covers the 

test configuration (3,2,1). The number of test 

configurations matches with the number of entries 

in the matrix. 

Test 

case 
A(row) B(column) C(value) 

1 1 1 1 

2 1 2 2 

3 1 3 3 

4 2 1 2 

5 2 2 3 

6 2 3 1 

7 3 1 3 

8 3 2 1 

9 3 3 2  

Table 3: 3 parameters, 3 values each 

   If the number of parameters exceeds three, a 

combined matrix (Cxy), which bases on a set of x 

mutually Latin Squares, is needed. Suppose all 

possible combinations of four parameters have to 

be tested. So we need two (number of parameters 

-2) matrices. They are defined as matrix A and 

matrix B. The entries of the combined matrix Cxy 

= (Axy, Bxy). Matrix A and matrix B are 

orthogonal if the ordered pairs (Axy,Bxy) are 

distinct for all x and y. Orthogonal arrays are 

balanced. That means that all values occur at least 

once and that all values occur the same number of 

times in a test set. 

 

1 2 3 

2 3 1 

3 1 2 
 

1 2 3 

3 1 2 

2 3 1 
 

1,1 2,2 3,3 

2,3 3,1 1,2 

3,2 1,3 2,1 
 

Matrix A Matrix B Matrix C 

Figure 5: Matrix A, B and the combined matrix C  

 

   The configuration of the test cases is created as 

before. For example the configuration for the 

highlighted entry (3,1) is row 2, column 2 entry 

3,1. 

 

Test 

case 

A 

(row) 

B 

(column) 

C 

(left 

value) 

D 

(right 

value)  

1 1 1 1 1 

2 1 2 2 2 

3 1 3 3 3 

4 2 1 2 3 

5 2 2 3 1 

6 2 3 1 2 

7 3 1 3 2 

8 3 2 1 3 

9 3 3 2 1 

Table 4: 4 parameters, 3 values each 

   There are several restrictions for orthogonal 

arrays: 

(1) All parameters have the same number of 

values. 

(2) Values are dependent (some combination 

of values are not allowed). 

(3) An adequate number of Latin Squares can 

be created. 



   Solutions: 

(1) Select the parameter, which has the 

maximum number of values. Fill up all 

other parameters with “no care values” up 

to this number of values. 

(2) Create hybrid pairs, which include 

allowed combination of values. 

(3) Extend the squares size to a value, where 

enough Squares exist. 

 

 

4.2 Covering array [4][5][6] 

 

   In contrast to orthogonal arrays, covering arrays 

are not balanced. Indeed all values appear at least 

once, but not the same number of times.  

For notation see chapter 4.1. Covering arrays in 

comparison to orthogonal arrays can be 

constructed with k > n+1 parameters. This 

formula can be changed to nmax = k – 1. Now the 

first step is to build an orthogonal array (n
2
, n+1, 

n). 

   To build covering arrays, the following 

denotations are needed. 

 Basic array B(n
2
-1, n+1,n, d) is equivalent 

to the orthogonal array with the first row 

removed. The columns are used d times 

consecutively. 

 Reduced array R(n
2
-n, n, n, d). is 

equivalent to the orthogonal array with n 

rows and the first column removed. The 

columns are used d times consecutively. 

 An array I(c, d) with c rows and d 

columns. The array is filled with “1”. 

 An array N(n
2
 - n , n, d) with n

2
 – n rows 

and n*d columns which of which consists 

of n * d sub arrays filled with values up to 

n. 

    

 Following tables refer to table 4. 

 

Basic array, B(8,4,3,1): 

1 2 2 2 

1 3 3 3 

2 1 2 3 

2 2 3 1 

2 3 1 2 

3 1 3 2 

3 2 1 3 

3 3 2 1 

Table 5: Basic array 

 

Reduced array, R(6,3,3,1): 

1 2 3 

2 3 1 

3 1 2 

1 3 2 

2 1 3 

3 2 1 

Table 6: Reduced array 

 

 

Array I(9,1): 

1 

1 

1 

1 

1 

1 

1 

1 

1 

Table 7: Array I 

 

Array N(6,3,1): 

2 

2 

2 

3 

3 

3 

Table 8: Array N 

 

   Depending of the number of parameters and 

values, the different arrays are joined together. 

  

4.3 Base Choice (BC) 

 

   Base choice considers that there are more and 

less important values. The most important values 

are selected to build to a default test 

configuration. In each test configuration, just the 

values, which are not in this default test 

configuration, change. 

 

4.4 In-parameter-order(IPO) 

 

   For a system with n parameters (n>1), in-

parameter-order creates a pairwise covering test 

set with the first two parameters. This test set will 



expand for every new parameter. This happens in 

two steps, the horizontal growth and the vertical 

growth. During horizontal growth a value of the 

new parameter is added to every existing test case 

(row). During vertical growth a new test case is 

added (column).  

 

   General IPO strategy [2]: 

Assume that System S has parameters p1,p2…pn ,   

n ≥ 2. Following strategy creates a test set T for S. 

 

begin  

      {for the first two parameters p1 and p2} 

      T := {(v1,v2) | v1 and v2 are the values 

      of p1  and p2 respectively} 

      If n = 2 then stop; 

      {for the remaining parameters} 

      for parameter pi, i = 3,4,..,n do 

         begin 

                {horizontal growth} 

                for each test (v1,v2,…,vi-1) in T do     

                   replace it with (v1,v2,…,vi-1,vi)                   

                       where vi is a value of pi 

                {vertical growth} 

               while T does not cover all pairs between                                                                            

fffffffffffffffpi and each of p1,p2,…,pi-1 do 

                add a new test for p1,p2,…,pi to T; 

          end 

end 

Figure 6: General IPO strategy[2] 

 

   One advantage of in-parameter-order became 

clear: 

If an established test set T is expanded to T‟ (by 

adding a new parameter or value), T can be 

reused. So less time is needed to create a new test 

set. 

 

   Following example will show how IPO works. 

Assume there are two parameters A, B with two 

values each. The complete test set T is {(A1, B1), 

(A1, B2), (A2, B1), (A2, B2)}. By adding C, which 

has three possible values, the established test set 

must be expanded.  

 

   Horizontal growth: 

The expanded test set T‟ contains the rows {(A1, 

B1, C1), (A1, B2, C1), (A2, B1, C2), (A2, B2, C2). It 

is obviously that there are not enough rows to 

satisfy pairwise coverage. Six pairs are uncovered 

{(A1, C2), (A1, C3), (A2, C1), (A2, C3), (B1, C3), 

(B2, C3)}.  

 

Test  

case 
A B C 

1 A1 B1 C1 

2 A1 B2 C1 

3 A2 B1 C2 

4 A2 B2 C2 

Table 5: Horizontal growth 

   

   Vertical growth: 

Focusing the uncovered pair the test case  

(A1, §
3
, C2) must be added to cover the pair (A1, 

C2). {(A1, C3), (A2, C1), (A2, C3)} are handled with 

the test cases {(A1, §, C3), (A2, §, C1), (A2, §, C3)}.  

 

Test  

case 
A B C 

1 A1 B1 C1 

2 A1 B2 C1 

3 A2 B1 C2 

4 A2 B2 C2 

5 A1 § C2 

6 A1 § C3 

7 A2 § C1 

8 A2 § C3 

Table 6: Vertical growth 

   To cover the two leftover pairs {(B1, C3), (B2, 

C3)}, don‟t care values can be easily replaced by 

B1, respectively B2. In the end, four new tests are 

generated for T‟. 

 

Test  

case 
A B C 

1 A1 B1 C1 

2 A1 B2 C1 

3 A2 B1 C2 

4 A2 B2 C2 

5 A1 § C2 

6 A1 B1 C3 

7 A2 § C1 

8 A2 B2 C3 

Table 7: T„ test set 

 

 

 

                                                                 
3
 § is a so called „don‟t care value“. It will be replaced 

later by a sense full value. 



4.5 All Combination (AC) 

 The all combination algorithm just builds all 

possible combinations of values of the input 

parameters. This results in a very large test set.  

 

5. Compound strategies     

5.1 All or Random 

 

   If the resulting test set size is less X (5000 is 

recommended for X by Kropp, Koopman, and 

Siewiorek [8]), then all combinations of parameter 

values are build. If the test set size will overstep 

X, than X test cases are randomly selected. 

 

 

6.   Comparison 

   In practice the most important topic is time. So 

testers watch out for an algorithm, which produces 

the minimal amount of test cases. Following table 

shows which number of test cases results from 

which algorithm. Depending on the algorithm, the 

all or random algorithm always has the maximum 

of X test cases. 

 

Test 

strategy 

Number of test cases  

(N parameter, V values) 

Orthogonal Arrays 

 

ca. V
2

max 

 

 

Covering Arrays 

 

ca. N
2
 + V max log

2
 V max 

 

Base Choice 

 

1+ ∑(V – 1) 

 

IPO 

 

 

ca. V
2

max 

 

 

All Choice 

 

 

V
 n 

 

 

All or random 

 

max. X 

 

Heuristic t-wise 

 

ca. V
2

max 

 Table 8: Number of test cases 

6. Conclusion 

 

  This paper gives an overview about the most 

important combination strategies and turn the 

attention to examples, which show how the single 

algorithm works. In chapter 6, the size of the test 

set from algorithm is showed respectively. 

 

 

References 

 

[1] R. Mandl. Orthogonal Latin Squares: An 

application of experiment design to compiler 

testing. Communications of the ACM, 

28(10):1054-1058, October 1985. 

[2] Y. Lei and K.C. Tai. In-parameter-order: A 

test generation strategy for pair-wise testing. 

In Proceedings of the third IEEE High 

Assurance Systems Engineering Symposium, 

pages 254-261. IEEE, November 1998. 

[3] D.M. Cohen, S.R. Dalal, J. Parelius, and G.C. 

Patton. The Combinatorial Design Approach 

to Automatic Test Generation. IEEE 

Software, pages 83-88, September 1996. 

[4] A.W. Williams and R.L. Probert. A practical 

strategy for testing pair-wise coverage of 

network interfaces. In Proceedings of the 7th 

International Symposium on Software 

Reliability Engineering (ISSRE96), 

White Plains, New York, USA, Oct 30 - Nov 

2, 1996, Nov 1996. 

[5] A.W. Williams. Determination of test 

configurations for pair-wise interaction 

coverage. In Proceedings of the 13th 

International Conference on the Testing of 

Communicating Systems (TestCom 2000), 

Ottawa,Canada, August 2000, pages 59-74, 

August 2000. 

[6] Karen Meagher. Covering Arrays on Graphs: 

Qualitative independence Graphs and 

extremal Set partition Theory. Chapter 2. 

[7] Mats Grindal, Jeff Offutt, Sten F. Andler. 

Combination Testing Strategies: A Survey. 

GMU Technical Report ISE-TR-04-05, July 

2004 

[8] N.P. Kropp, P.J. Koopman, and D.P. 

Siewiorek. Automated robustness testing of 

off-the-shelf software components. In 

Proceedings of FTCS'98: Fault Tolerant 

Computing Symposium, June 23-25, 1998 in 

Munich, Germany, pages 230-239. IEEE, 

1998. 

 


