

Classic algorithms for Pairwise Testing

Andreas Rothmann

Hochschule Offenburg

andy.rothmann@gmx.de

November 2008

Abstract

 This paper gives an overview on the most

important classic algorithms for pairwise testing.

All algorithms use combinatorial strategies to find

a test set, which covers pairwise combinations of

system parameters (for example system settings or

inputs from the user). The idea of pairwise testing

is already 20 years old but for the last five years

its popularity has been rising extremely. The

reason is that testers have to face more complex

software projects with the same time target.

Keywords: Algorithm, Pairwise testing

1. Introduction

 Pairwise testing (two-way testing) has its root in

empiric results [1]. This shows that most failures

are caused by one parameter (single-mode fault)

or by the interaction of two parameters (double-

mode fault). It is not necessary to test all possible

values of different parameters in all combinations.

It is sufficient to test each parameter in each of its

states, tested in pair with every other parameter in

each of its states. In certain circumstances an

enormous decrease of test cases is possible. If

there is a table with 75 fields and each field is able

to have the values 0 and 1, there are 2
75

 possible

test cases. Using pair wise testing reduces the

number of test cases to 28. To clarify how

pairwise testing is working, see the following

example.

Precondition:

 Parameter A has values A1, A2 and A3

 Parameter B has values B1 ,B2 and B3

 Parameter C has values C1 und C2

 If parameter A, B and C are tested in all possible

combinations, there are 18 test sets.

Test case A B C

1 A1 B1 C1

2 A2 B1 C1

3 A3 B1 C1

4 A1 B2 C1

5 A2 B2 C1

6 A3 B2 C1

7 A1 B3 C1

8 A2 B3 C1

9 A3 B3 C1

10 A1 B1 C2

11 A2 B1 C2

12 A3 B1 C2

13 A1 B2 C2

14 A2 B2 C2

15 A3 B2 C2

16 A1 B3 C2

17 A2 B3 C2

18 A3 B3 C2

Table 1: All possible combinations

 By only taking single-mode faults and double-

mode faults into consideration, 9 test cases are

have to be executed.

Test case A B C

1 A1 B1 C1

5 A2 B2 C1

6 A3 B2 C1

8 A2 B3 C1

9 A3 B3 C1

11 A2 B1 C2

12 A3 B1 C2

13 A1 B2 C2

16 A1 B3 C2

Table 2: Reduced number of test cases

2. Classic algorithms

 The algorithms (so-called combination

strategies), which are used to minimize the

number of test cases, are divided in three

categories:

Figure 1: Overview[6]

 Non-deterministic combination strategies

contain a chance to extent. This chance causes

different output (results) after the same input. The

random algorithm displays the strongest kind of

non-deterministic strategies. Another subcategory

is the heuristic algorithm (for example

implemented in AETG
1
).

 Deterministic algorithm is the second

subcategory of combination strategies. Here the

same input always leads to the same output. Many

algorithms, which belong to the determinic

subcategory base on orthogonal arrays[1]. Further

elements of deterministic combination strategies

are the iterative and parameter-based

strategies[2].

 The third and last subcategory is called

compound strategies. Here all algorithms are

added, which have deterministic parts as well as

non-deterministic parts.

3. Non-deterministic algorithms

3.1 Heuristic (t-wise
2
)

Assume test cases t1 – ti-1 already selected.

1
AETG (Automated Efficient Test Generator) is a

trademark of Telcordia Technologies.
2
 t is an arbitrary number.

Let Q be the set of all possible combinations not

yet selected.

Let UC be a set of all pairs of values of any two

parameters that are not yet covered by the test

cases t1 – ti-1.

A)

 Select ti by finding the combination that

covers the most pairs of UC. If more than

one combination that covers the same

amount of pairs, select the first one

encountered.

 Remove the selected combination from Q.

 Remove the covered pairs from UC.

B)

 Repeat until UC is empty.

Figure 2: Heuristic t-wise algorithm

 Assume test cases t1 – ti-1 already selected.

Let UC be a set of all pairs of values of any two

parameters that are not yet covered by the test

cases t1 – ti-1.

A) Select candidates for ti by

1. Selecting the variable and the value included

in the most pairs in UC.

2. Making a random order of the rest of the

variables.

3. For each variable, in the sequence determined

by step two, select the value included in most

pairs of UC.

B) Repeat steps 1-3 k times and let ti be the test

case that covers the most pairs in UC.

Repeat until UC is empty.

Figure 3: Heuristic t-wise algorithm [3]

3.2 Random

 This subcategory of the non-deterministic

strategies only reduces test cases by chance. So

there is no pseudocode avaiable.

4. Deterministic algorithms

4.1 Orthogonal Arrays[1,5]

 The use of orthogonal arrays is an established

instrument in statistical experiments. It was

developed by Taguchi Gen‟ichi. The foundation

of orthogonal arrays are n*n latin squares. The

most important thing (and the main property of

latin squares) is that an entry must not appear

twice in a row or a column. By merging k-2 (k is

the number of parameters) latin squares, an

orthogonal array is created.

Notation:

O(c,k,n,t) is an orthogonal array, where

 c is the number of rows. Each row

represents a test case.

 k represents the number of columns

(number of parameters).

 each parameter has the maximum number

of n values

 t is the strenght of the array. That means

that in every submatrix c*t each n
t
 tuble

appears just one time (in the case of

pairwise testing t=2).

 The clarify how to work with orthogonal arrays,

assume three parameters (a,b,c) with three values

each. The first parameter (a) takes the value of the

row, the second takes the value of the column an

the third takes the value, which is displayed in the

matrix.

 First build the matrix (as per rules above one

3*3 matrix is needed)

1 2 3

2 3 1

3 1 2

Figure 4: Orthogonal 3*3 array

 For example the highlighted entry covers the

test configuration (3,2,1). The number of test

configurations matches with the number of entries

in the matrix.

Test

case
A(row) B(column) C(value)

1 1 1 1

2 1 2 2

3 1 3 3

4 2 1 2

5 2 2 3

6 2 3 1

7 3 1 3

8 3 2 1

9 3 3 2

Table 3: 3 parameters, 3 values each

 If the number of parameters exceeds three, a

combined matrix (Cxy), which bases on a set of x

mutually Latin Squares, is needed. Suppose all

possible combinations of four parameters have to

be tested. So we need two (number of parameters

-2) matrices. They are defined as matrix A and

matrix B. The entries of the combined matrix Cxy

= (Axy, Bxy). Matrix A and matrix B are

orthogonal if the ordered pairs (Axy,Bxy) are

distinct for all x and y. Orthogonal arrays are

balanced. That means that all values occur at least

once and that all values occur the same number of

times in a test set.

1 2 3

2 3 1

3 1 2

1 2 3

3 1 2

2 3 1

1,1 2,2 3,3

2,3 3,1 1,2

3,2 1,3 2,1

Matrix A Matrix B Matrix C

Figure 5: Matrix A, B and the combined matrix C

 The configuration of the test cases is created as

before. For example the configuration for the

highlighted entry (3,1) is row 2, column 2 entry

3,1.

Test

case

A

(row)

B

(column)

C

(left

value)

D

(right

value)

1 1 1 1 1

2 1 2 2 2

3 1 3 3 3

4 2 1 2 3

5 2 2 3 1

6 2 3 1 2

7 3 1 3 2

8 3 2 1 3

9 3 3 2 1

Table 4: 4 parameters, 3 values each

 There are several restrictions for orthogonal

arrays:

(1) All parameters have the same number of

values.

(2) Values are dependent (some combination

of values are not allowed).

(3) An adequate number of Latin Squares can

be created.

 Solutions:

(1) Select the parameter, which has the

maximum number of values. Fill up all

other parameters with “no care values” up

to this number of values.

(2) Create hybrid pairs, which include

allowed combination of values.

(3) Extend the squares size to a value, where

enough Squares exist.

4.2 Covering array [4][5][6]

 In contrast to orthogonal arrays, covering arrays

are not balanced. Indeed all values appear at least

once, but not the same number of times.

For notation see chapter 4.1. Covering arrays in

comparison to orthogonal arrays can be

constructed with k > n+1 parameters. This

formula can be changed to nmax = k – 1. Now the

first step is to build an orthogonal array (n
2
, n+1,

n).

 To build covering arrays, the following

denotations are needed.

 Basic array B(n
2
-1, n+1,n, d) is equivalent

to the orthogonal array with the first row

removed. The columns are used d times

consecutively.

 Reduced array R(n
2
-n, n, n, d). is

equivalent to the orthogonal array with n

rows and the first column removed. The

columns are used d times consecutively.

 An array I(c, d) with c rows and d

columns. The array is filled with “1”.

 An array N(n
2
 - n , n, d) with n

2
 – n rows

and n*d columns which of which consists

of n * d sub arrays filled with values up to

n.

 Following tables refer to table 4.

Basic array, B(8,4,3,1):

1 2 2 2

1 3 3 3

2 1 2 3

2 2 3 1

2 3 1 2

3 1 3 2

3 2 1 3

3 3 2 1

Table 5: Basic array

Reduced array, R(6,3,3,1):

1 2 3

2 3 1

3 1 2

1 3 2

2 1 3

3 2 1

Table 6: Reduced array

Array I(9,1):

1

1

1

1

1

1

1

1

1

Table 7: Array I

Array N(6,3,1):

2

2

2

3

3

3

Table 8: Array N

 Depending of the number of parameters and

values, the different arrays are joined together.

4.3 Base Choice (BC)

 Base choice considers that there are more and

less important values. The most important values

are selected to build to a default test

configuration. In each test configuration, just the

values, which are not in this default test

configuration, change.

4.4 In-parameter-order(IPO)

 For a system with n parameters (n>1), in-

parameter-order creates a pairwise covering test

set with the first two parameters. This test set will

expand for every new parameter. This happens in

two steps, the horizontal growth and the vertical

growth. During horizontal growth a value of the

new parameter is added to every existing test case

(row). During vertical growth a new test case is

added (column).

 General IPO strategy [2]:

Assume that System S has parameters p1,p2…pn ,

n ≥ 2. Following strategy creates a test set T for S.

begin

 {for the first two parameters p1 and p2}

 T := {(v1,v2) | v1 and v2 are the values

 of p1 and p2 respectively}

 If n = 2 then stop;

 {for the remaining parameters}

 for parameter pi, i = 3,4,..,n do

 begin

 {horizontal growth}

 for each test (v1,v2,…,vi-1) in T do

 replace it with (v1,v2,…,vi-1,vi)

 where vi is a value of pi

 {vertical growth}

 while T does not cover all pairs between

fffffffffffffffpi and each of p1,p2,…,pi-1 do

 add a new test for p1,p2,…,pi to T;

 end

end

Figure 6: General IPO strategy[2]

 One advantage of in-parameter-order became

clear:

If an established test set T is expanded to T‟ (by

adding a new parameter or value), T can be

reused. So less time is needed to create a new test

set.

 Following example will show how IPO works.

Assume there are two parameters A, B with two

values each. The complete test set T is {(A1, B1),

(A1, B2), (A2, B1), (A2, B2)}. By adding C, which

has three possible values, the established test set

must be expanded.

 Horizontal growth:

The expanded test set T‟ contains the rows {(A1,

B1, C1), (A1, B2, C1), (A2, B1, C2), (A2, B2, C2). It

is obviously that there are not enough rows to

satisfy pairwise coverage. Six pairs are uncovered

{(A1, C2), (A1, C3), (A2, C1), (A2, C3), (B1, C3),

(B2, C3)}.

Test

case
A B C

1 A1 B1 C1

2 A1 B2 C1

3 A2 B1 C2

4 A2 B2 C2

Table 5: Horizontal growth

 Vertical growth:

Focusing the uncovered pair the test case

(A1, §
3
, C2) must be added to cover the pair (A1,

C2). {(A1, C3), (A2, C1), (A2, C3)} are handled with

the test cases {(A1, §, C3), (A2, §, C1), (A2, §, C3)}.

Test

case
A B C

1 A1 B1 C1

2 A1 B2 C1

3 A2 B1 C2

4 A2 B2 C2

5 A1 § C2

6 A1 § C3

7 A2 § C1

8 A2 § C3

Table 6: Vertical growth

 To cover the two leftover pairs {(B1, C3), (B2,

C3)}, don‟t care values can be easily replaced by

B1, respectively B2. In the end, four new tests are

generated for T‟.

Test

case
A B C

1 A1 B1 C1

2 A1 B2 C1

3 A2 B1 C2

4 A2 B2 C2

5 A1 § C2

6 A1 B1 C3

7 A2 § C1

8 A2 B2 C3

Table 7: T„ test set

3
 § is a so called „don‟t care value“. It will be replaced

later by a sense full value.

4.5 All Combination (AC)

 The all combination algorithm just builds all

possible combinations of values of the input

parameters. This results in a very large test set.

5. Compound strategies

5.1 All or Random

 If the resulting test set size is less X (5000 is

recommended for X by Kropp, Koopman, and

Siewiorek [8]), then all combinations of parameter

values are build. If the test set size will overstep

X, than X test cases are randomly selected.

6. Comparison

 In practice the most important topic is time. So

testers watch out for an algorithm, which produces

the minimal amount of test cases. Following table

shows which number of test cases results from

which algorithm. Depending on the algorithm, the

all or random algorithm always has the maximum

of X test cases.

Test

strategy

Number of test cases

(N parameter, V values)

Orthogonal Arrays

ca. V
2

max

Covering Arrays

ca. N
2
 + V max log

2
 V max

Base Choice

1+ ∑(V – 1)

IPO

ca. V
2

max

All Choice

V
 n

All or random

max. X

Heuristic t-wise

ca. V
2

max

 Table 8: Number of test cases

6. Conclusion

 This paper gives an overview about the most

important combination strategies and turn the

attention to examples, which show how the single

algorithm works. In chapter 6, the size of the test

set from algorithm is showed respectively.

References

[1] R. Mandl. Orthogonal Latin Squares: An

application of experiment design to compiler

testing. Communications of the ACM,

28(10):1054-1058, October 1985.

[2] Y. Lei and K.C. Tai. In-parameter-order: A

test generation strategy for pair-wise testing.

In Proceedings of the third IEEE High

Assurance Systems Engineering Symposium,

pages 254-261. IEEE, November 1998.

[3] D.M. Cohen, S.R. Dalal, J. Parelius, and G.C.

Patton. The Combinatorial Design Approach

to Automatic Test Generation. IEEE

Software, pages 83-88, September 1996.

[4] A.W. Williams and R.L. Probert. A practical

strategy for testing pair-wise coverage of

network interfaces. In Proceedings of the 7th

International Symposium on Software

Reliability Engineering (ISSRE96),

White Plains, New York, USA, Oct 30 - Nov

2, 1996, Nov 1996.

[5] A.W. Williams. Determination of test

configurations for pair-wise interaction

coverage. In Proceedings of the 13th

International Conference on the Testing of

Communicating Systems (TestCom 2000),

Ottawa,Canada, August 2000, pages 59-74,

August 2000.

[6] Karen Meagher. Covering Arrays on Graphs:

Qualitative independence Graphs and

extremal Set partition Theory. Chapter 2.

[7] Mats Grindal, Jeff Offutt, Sten F. Andler.

Combination Testing Strategies: A Survey.

GMU Technical Report ISE-TR-04-05, July

2004

[8] N.P. Kropp, P.J. Koopman, and D.P.

Siewiorek. Automated robustness testing of

off-the-shelf software components. In

Proceedings of FTCS'98: Fault Tolerant

Computing Symposium, June 23-25, 1998 in

Munich, Germany, pages 230-239. IEEE,

1998.

