
Testwell CTC++: Code Coverage Analysis for safety-critical Embedded Systems

by Professor Dr. Daniel Fischer (University of Applied Sciences Offenburg, Germany)

Software for embedded systems is often used in safety-critical systems. In this area
malfunctions could lead to accidents or damages of high magnitude and even to loss of
lives. Therefore, security standards such as the DO178-C (aviation), the ISO 26262
(automotive) or the EN 50128 (railway) demands harsh proof of code coverage. In
dependency to the criticality, a suitable level of code coverage has to be applied.
Function Coverage is calculated by counting the number of all called functions and divide it
by the number of all functions existing within the embedded software. The benefit of these
tests is rather small because the control flow inside the functions is ignored completely.
Statement Coverage counts the statements that have been executed by tests. On this
level already, dead code can be spotted or statements that have no test case yet can be
found.
Branch Coverage is calculated on the basis of all primitive branches without pointing them
out explicitly.
MC/DC (Modified Condition Decision Coverage) is calculated by considering all
atomic conditions of a compound condition. For each atomic condition it has to be
proven by a pair of test cases, that the final decision is affected by this atomic condition
while the other atomic conditions are unchanged. This coverage level is mandatory for
security critical software in aeronautic and automotive industries.

 Testwell CTC++ shows code coverage for all functions

For code coverage analysis, the source code of the embedded software is instrumented
and preferably executed on the host as well as on the target platform. For some
embedded systems several limitations has to be considered such like less available RAM
and ROM memory. This fact does not allow an extensive instrumentation of the code.

To perform coverage analysis, obviously there has to be a greater memory usage as for
the non-instrumented source code. Instrumentation leads to greater consumption of RAM
and ROM. This can be especially for small embedded systems a real challenge. A partial
instrumentation with repeated test cycles could be one solution. To reduce RAM usage,
there is also the possibility of decreasing the size of a single counter from 32 bit to 16 bit or
even down to 8 bit. If it is only important that the code is covered and not how often, then it
is possible to replace the 32-Bit counters by single bits. This is called Bit Coverage and
can downsize the need for additional RAM by a factor of nearly 32. This technology is
supported by Testwell CTC++ Test Coverage Analyser of Verifysoft Technology.

Further information: http://www.verifysoft.com/en_ctcpp.html

 The read part of the code is not yet covered. A test where the first condition is false and
 the second is true need to be added in order to achieve full code coverage.

http://www.verifysoft.com/en_ctcpp.html

