
Technical White Paper

Detecting Domain-specific Coding Errors
with Static Analysis
Paul Anderson, Ph.D.

VP of Engineering, GrammaTech

Abstract

Advanced static-analysis tools for finding programming errors have become very
popular recently. These detect many common generic programming errors such
as null pointer dereferences, buffer overruns, and race conditions. Most major
static-analysis tools also provide an interface that can be used to find domain-
specific errors. This paper describes how custom domain-specific checkers can be
used to improve software quality in complex embedded systems.

1. Introduction
Static analysis is a term that describes techniques that compute run-time
properties of programs, without actually executing them. Static-analysis tools are
typically used to find program defects. The first generation of static-analysis
tools, exemplified by the lint family of tools, had limited capability and were only
capable of finding superficial defects. The latest generation, such as
GrammaTech’s CodeSonar® use highly sophisticated whole-program analyses to
find deep semantic problems [1]. This paper is about this class of tools, and refers
to them as advanced static-analysis tools.

Out of the box, advanced static analysis tools are good at finding programming
defects that arise because a fundamental rule of the languages is being violated
(e.g., a buffer overrun), or because an API is being used incorrectly (such as
closing the same file descriptor twice). Many tools are also capable of finding
violations of stylistic rules (e.g., don’t use goto). These tools have proven to be
effective at finding serious problems, and they have been widely adopted. For
example, see [2, 3].

An often under-appreciated aspect of these tools is that they are extensible. They
can be configured or programmed to find violations of domain-specific rules too.
So if you have rules for using an internal API, or require programmers to use a
particular idiom, then it is often possible to write a checker that signals violations
of those rules. Programmers can, often with a little programming effort,
dramatically increase the value they get from the tools.

1

http://www.grammatech.com/

y
k

This ppaper describbes some of the ways in which staticc-analysis to ols can be
extendded. Sectionn 2 describess how these ttools work. SSection 3 usees examples to
descriibe several wways in whichh the tools ccan be custommized. Section 4 concluddes
with ssome recommmendations..

2. H ow Advaanced Staatic Analyysis Workks
In ordder to undersstand the diffferent wayss in which exxtensions cann be written n, it
first hhelps to knoww what staticc analyis is, aand how theese tools worrk.

Static-analysis toools work veryy much like compilers. TThey take soource code ass
input,, which they then parse aand convert to an intermmediate reprresentation ((IR).
The IRR typically coomprises th e program’s abstract synntax tree (ASST), the symmbol
table, the control--flow graph ((CFG), and tthe call grapph. A block ddiagram of thhe
archittecture of ann advanced sttatic-analysiis tool is shoown below inn Figure 1.
Whereeas a compiller would usse the IR to ggenerate obj ect code, staatic-analysis
tools rretain the IRR, and checkers are usuaally implemeented by travversing or
querying the IR loooking for paarticular prooperties or p patterns that indicate deffects.
A simple checker, such as onee that looks ffor simple syyntactic propperties (e.g.,, goto
statemments), woulld search thee abstract syyntax tree forr constructs that match that
patterrn. A more coomplex checcker might eexamine the call graph o r CFG.

The addvanced toools get their ppower from ssophisticateed symbolic eexecution
techniiques that exxplore pathss through thee control-floow graph. Thhese algorithhms
keep ttrack of the aabstract statte of the proggram and knnow how to uuse that statte to
excludde consideraation of infeaasible paths.. This level oof complexityy is requiredd in
order to find the sserious bugs while keepiing the level of false posiitives low.

Figure 1. The architeccture of an advvanced static-aanalysis tool.

2

Although all advanced static-analysis tools have an architecture much like the
one shown, the details differ somewhat. In GrammaTech CodeSonar®, all of the
intermediate representations are retained, and an interface allows end users to
author code that inspects these representations in various ways. The techniques
with which new checkers can be written are described in the next section.

3. Custom Checkers
No two tools provide exactly the same interface or techniques for implementing
custom checkers, but three mechanisms are common, and are described in more
detail in the subsequent subsections:

 Existing checkers can be extended by adding directives to a configuration
file.

 The user can add annotations to their code that instruct the analysis to look
for certain properties. In CodeSonar®, these annotations can be done on the
side in an aspect-oriented fashion if users do not wish to perturb the source
code.

 An API allows users access to all of the intermediate representations.
Typically, a visitor pattern is used that allows extensions to piggyback on
traversals the analysis is already doing.

Although most tools have similar mechanisms, the examples are shown for
CodeSonar.

3.1. Configuration Files
These advanced static analysis tools implement dozens of checkers. Often, a user
needs a checker that is only slightly different than a built-in one, and many of
them have been designed to be extensible. One class of checkers finds functions
whose use is forbidden. For example, the C library function gets is notoriously
insecure (and is now officially deprecated). The checker is implemented by a
phase that finds references to function names, and then matches them against a
set of regular expressions. It is a simple matter to add additional regular
expressions to this set by adding lines to a configuration file.

A similar process applies to extend the set of functions whose return value should
always be checked, or to specify which functions take format string parameters.

3.2. Code Annotations
The second way in to write checkers is to add annotations to the code.

Suppose for example that there is an internal function named foo that takes a
single integer parameter, and that it is dangerous for that parameter to have the
value -1. A check for this case could be implemented by adding some code to the
body of foo as follows:

3

void foo(int x)
{
#ifdef __CSURF__

csonar_trigger(x, "==", -1,
"Dangerous call to foo()");

#endif __CSURF__
…

}

The #ifdef construct ensures that this new code is not seen by the regular
compiler. However when this code is analyzed by CodeSonar, the call to
csonar_trigger is seen. Thus this call is never actually executed, but is instead
interpreted by the tool as a directive to the underlying analysis engine. If the
analysis considers that the trigger condition may be satisifed, then it will issue a
warning with the given message.

Of course in most cases it is not appropriate to require that programmers
interleave these annotations with the code, so there is an alternative way to
implement this kind of check that allows it to be written in a separate file, which
avoids the need for the code to be edited. This approach is also appropriate when
the source code for foo is not available, such as when it is in a third-party library.
To do this, the author of the checker would write a replacement function as
follows:

void csonar_replace_foo(int x)
{

csonar_trigger(x, "==", -1,
"Dangerous call to foo()");

foo();
}

When the analysis sees the definition of csonar_replace_foo, it treats all calls in
the code to foo (except the one inside csonar_replace_foo) as if they were calls to
csonar_replace_foo instead.

This trigger idiom is good for checking temporal properties, particularly
sequences of function calls. Suppose there is a rule that says that bar should
never be called while foo is executing. A check might be implemented as follows:

static int foo_is_executing = 0;
void csonar_replace_foo(int x) {

foo_is_executing = 1;
foo();
foo_is_executing = 0;

}

4

void csonar_replace_bar(void) {
csonar_trigger(foo_is_executing, "==", 1,

"Call to bar from foo");
bar();

}

Note that a global state variable is used to record whether or not foo is active.
Before entry to foo it is set to one, and then reset to zero after foo returns. This
variable is then checked in the trigger in bar, and if set to one, a warning will be
issued.

The example above shows how a global property might be checked. The same
mechanism can be used to write checks for properties of objects. For example, it
is illegal to read from a file object after it has been closed. In such a case the state
being checked must be associated with the file object. The extension API allows
users to specify attributes that can be attached to objects. These can be thought
of as state variables that can be associated with objects. In the example just given,
an attribute can be used to encode whether a file object is open or closed, and the
checker for a reader function can test the value of that attribute and issue a
warning if the file is in fact closed.

This approach allows users to author static checks almost as if they were writing
dynamic checks. The API for this kind of check is small, and the language is
regular C, so there is a shallow learning curve. This simplicity is deceptive — the
technique can be used to implement fairly sophisticated checks. In CodeSonar,
many of the out-of-the-box checks are implemented this way.

3.3. API for Intermediate Representations
The final way to implement a custom check is to use the API that gives access to
the underlying IR. This technique has been used by CodeSonar users to
implement a variety of checkers. For example, one company makes a highly
sophisticated electronics manufacturing system, controlled by in excess of a
million lines of code. They employ a custom idiom for handling hardware errors.
If this is not followed consistently, then it can lead to excessive expensive
downtime for their customers. They created a custom checker in CodeSonar that
finds locations in the code where the idiom is incorrect.

This API can be used for other program analysis tasks too. A medical device
company uses CodeSonar to identify potential tasking problems in their code,
and to emit information that allows them to interactively explore properties of
stack configurations.

Many checks can be written using a visitor pattern. A visitor is a function that is
invoked on every IR element of the appropriate type; there are different visitor
types for different IR constructs. When they are present, visitors piggyback on the
various traversals carried out by the analysis. Visitors can be defined for files,

5

identifiers, subprograms, and nodes in the control-flow graph (which correspond
roughly to program statements), and the syntax tree. The interface to a visitor
allows for pattern matching against the construct. This way a checker author can
easily search for constructs without having to know exactly how they are
represented.

For example, suppose there is a rule that no variable is allowed to contain upper
case characters. The checker for this would be best implemented by writing a
function that takes an identifier as input, checks that it represents a variable,
scans it for upper-case letters, and issues a warning if one is found. This function
would be registered as a visitor for the table of identifiers.

CodeSonar has an additional kind of visitor, which is invoked during the path
exploration of the control-flow graph. At each step along the path, the check can
query the abstract state of the program, so the implementation can ask questions
such as “what is the value of this variable at this point”. This allows the checker
author to write sophisticated checks that leverage the built-in program analysis
capabilities of the tool. A key aspect of this kind of checker is that it uses the part
of the analysis that eliminates the exploration of infeasible paths, which
automatically reduces the probability of false positive results.

4. Recommendations
Advanced static-analysis tools have become essential tools for software
developers because they have proven effective at finding serious flaws. Users of
such tools should consider writing custom checkers in order to dramatically
increase their return on investment.

References

1. 	 GrammaTech Inc., CodeSonar,

http://www.grammatech.com/products/codesonar/.

2. 	 Jetley, R. P., Anderson, P., and Jones, P. L., Static Analysis of Medical Device
Software using CodeSonar. In Static Analysis Workshop (SAW). 2008. Tucson,
AZ: ACM Press.

3. 	 Pope,G., Ferrari,K., and Oliver,B., Give Your Defects Some Static -- Using Static
Analyzers to Debug Your Code. in Better Software. July, 2008. pp. 36-42.

	

GrammaTech, Inc.
531 Esty Street
Ithaca, NY 14850

Tel: 607.273.7340 CodeSonar and CodeSurfer are registered trademarks of GrammaTech, Inc.

www.grammatech.com © 2010 GrammaTech, Inc. All rights reserved.

6

http://www.grammatech.com/products/codesonar/
http://www.grammatech.com/

