5/11/2021

Finding the Serious Bugs that Matter with Advanced
Static Analysis

Static Analysis Days @ Verifysoft, May 2021
Paul Anderson, VP of Engineering, GrammaTech, Inc.

Key Takeaway @

Real Functional Safety is More
Important than Conformance

Do use a coding standard and check for violations,
but....

Don’t assume that conformance guarantees safety

5/11/2021

Overview @

» Static Analysis — superficial vs. deep

» The risks of C and C++

» Techniques needed for advanced static analysis
= Examples

» Customization

www.grammatech.com 3 © GrammaTech, Inc. All rights reserved.

3
Introduction to Static Analysis @

» |nfers information about software behavior based on an abstract
model of the code
— In contrast to dynamic analysis, such as profiling, debugging, testing
= Analyzes code instead of executing it
— So no test cases are needed
» |s usually a two-phase process
— Extract semantic information from source code
— Use information to discover defects or other properties of interest
= This talk is mostly about Advanced static analysis for Bug
Finding
— As exemplified by CodeSonar-

www.grammatech.com 4 © GrammaTech, Inc. Al rights reserved.

N

Superficial vs. Deep

5/11/2021

= Syntactic rules /
— Mostly surface-level properties
Most are decidable [
Many are about improving readability
Violations generally easy to find
Low correlation with serious defects
= i.e., unlikely to cause crashing bugs

= Semantic rules
— Mostly about run-time properties
— Usually undecidable
— Powerful analyses are necessary for detection
— High correlation with serious defects

www.grammatech.com 5

Checkable by early-generation tools such as lint, or by some
modern compilers

Many discrete Misra rules cover many instances

Only 9/72 Misra rules were observed to be better than

random at predicting defects
C. Boogerd and L. Moonen. Assessing the Value of Coding Standards: An Empirical
Study. In Proceedings of the 24th International Conference on Software Maintenance
(ICSM), pages 277-286. IEEE Computer Society Press, 2008.

Covered indirectly by a small number of Misra rules. E.g.,
Misra C 2012 Rule 1.3: There shall be no occurrence of undefined or
critical unspecified behavior

= E.g, leaks, buffer overruns, null pointer exceptions, use after free, uninitialized variables, etc.

© GrammaTech, Inc. All rights reserved.

Overview

The risks of C and C++

Examples
Customization

www.grammatech.com 6

Techniques needed for advanced static analysis

© GrammaTech, Inc. All rights reserved.

The Two Most Important Rules in Misra C

5/11/2021

Rule 1.3 There shall be no occurrence of undefined or critical unspecified
behaviour

Category Required

Analysis Undecidable, System

Applies to €90, C99

Amplification

Some undefined and unspecified behaviours are dealt with by specific rules. This rule prevents all
other undefined and critical unspecified behaviours. Appendix H lists the undefined behaviours and
those unspecified behaviours that are considered critical.

Dir 4.1 Run-time failures shall be minimized

C90 [Undefined 15, 19, 26, 30, 31, 32, 94]
C99 [Undefined 15, 16, 33, 40, 43-45, 48, 49, 113]
Category Required

Applies to €90, C99

Rationale

The C language was designed to provide very limited built-in run-time checking. While this approach
allows generation of compact and fast executable code, it places the burden of run-time checking
on the programmer. In order to achieve the desired level of robustness, it is therefore important
that programmers carefully consider adding dynamic checks wherever there is potential for run-time

errors to occur.

www.grammatech.com

© GrammaTech, Inc. All rights reserved.

Undefined and Critical Unspecified Behavior

= Undefined Behavior

— 230 instances in C90/99
— 65 not covered by any other MISRA Rule

= Critical Unspecified Behavior
— What does malloc (0) return?
- 51 instances
— 17 not covered by any other MISRA Rule

= (99 standard:
— 2% pages of Unspecified behavior
— 13 pages of Undefined behavior
— 6% pages of Implementation-defined behavior

- E.g.: “The program attempts to modify a string literal.”

www.grammatech.com 8

© GrammaTech, Inc. All rights reserved.

5/11/2021

Risks of Undefined Behavior @

» The Achilles Heel of C programs
= => anything goes, including “Catch fire”!
» Not a rarely-encountered niche
» Source of most serious bugs
— Buffer overruns
— Invalid pointer indirection
— Use after free
— Double free

— Data races - |
— Division by zero

— Use of uninitialized memory
- Etc....

www.grammatech.com 9 © GrammaTech, Inc. All rights reserved.

o

Overview @

» Techniques needed for advanced static analysis
= Examples
= Customization

www.grammatech.com 10 © GrammaTech, Inc. Al rights reserved.

5/11/2021

Advanced Static Analysis Tools

= Tools whose primary purpose is to find
serious bugs
— Mostly undefined behavior

= Understand semantics, not just syntax _— N i | e
Code Extraction ‘ (IR) ‘ ‘ Results

%(_/
= Based on abstract interpretation e e, g
— Using techniques pioneered in high- iidsesiiicsndiiu s uli T

= APl aware

— With knowledge of how library functions
respond in anomalous circumstances

. — — (AST) (CFG)
assurance hardware design : : @ i

www.grammatech.com " © GrammaTech, Inc. All rights reserved.

11

Properties of Advanced Static Analysis Tools

= Precise whole program model

— Derived from parsing the code just as the compiler would
= Flow-sensitive

- Analysis understands order of execution
= Interprocedural

— For tracking data and control flow between procedures

int f(int x, int y)

int result;

= Context-sensitive it k<o)

- Analysis understands that different call sites have different ol - i

properties) else P = NULL
. p = NULL;

= Whole-program analysis) p = sy

— To analyze effects of data and control flow across file boundaries gt
* Path-sensitive et - e o

- Analysis can compute properties of distinct paths O S FALSE

— Infeasible paths are eliminated
— Results shown in terms of paths through the code
= Concurrency sensitive return result
— Aware of threads and locking
= Learning/statistical analysis
— To find deviations from “normal”

result = x * y result = *p

www.grammatech.com 12 © GrammaTech, Inc. Al rights reserved.

12

5/11/2021

Overview @

= Examples
= Customization

www.grammatech.com 13 © GrammaTech, Inc. All rights reserved.

13
Examples @

= All were found in production code

= All are unlikely to be flagged as violations of coding
standards

www.grammatech.com 14 © GrammaTech, Inc. Al rights reserved.

Example: Abstract Interpretation

5/11/2021

2186 char *return_append_str(char *dest, const char *s) {
2187 /* Append text s to dest, and return new result. */

2188 char *newloc;

2189 size_t newlen;

2190 /* This doesn't have buffer overflow vulnerabilities, because
2191 we always allocate for enough space before appending. */
2192 if (!dest) {

2193 newloc = (char *) malloc(strlen(s))+1;

2194 strcpy(newloc, s);

2195 return newloc;

2196 }

2197 newlen = strlen(dest) + strlen(s) + 1;

2198 newloc = (char *) malloc(newlen);

2199 strcpy(newloc, dest);

2200 if (!newloc) return dest; /* Can’'t do it, throw away the data */
2201 strcat(newloc, s);

2202 return newloc;

2203 }

www.grammatech.com

© GrammaTech, Inc. All rights reserved.

15

Example: Abstract Interpretation

A
2186 char *return_append_str(char *dest, const char *s) {
2187 /* Append text s to dest, and return new result. */
2188 char *newloc;
2189 size_t newlen;
2190 /* This doesn't have buffer overflow vulnerabilities, because
2191 we always allocate for enough space before appending. */
2192 M if (!dest) {
A 2193 newloc = (char *) malloc(strlen(s))+1;

AEvent2: sis passed to strlen().
« This determines the capacity of the buffer that will be overrun later.
A v hide
A\ Event 5: malloc() returns the address of a new object.
« This points to the buffer that will be overrun later.
A v hide

A 2194 strepy(newloc, s));

£\ Event 8: s is passed to strcpy() as the second argument.
« This determines the position accessed during the buffer overrun later.
A v hide
Buffer Overrun
This code writes past the end of the buffer pointed to by newloc.
+ newloc evaluates to malloc(strlen(s)) + ljexpgn.c:2193-

« strcpy() writes to the byte at an offset that is the length of the string pointed to by s, plus 1 from the beginning of the buffer pointed to by newloc.

o The offset exceeds the capacity.
o The length of the string pointed to by s, plus 1 is no less than 1. See related event 8.

o The capacity of the buffer pointed to by newloc, in bytes, is the length of the string pointed to by s, which is bounded below by 8. See related events 6 and 9.

« The overrun occurs in heap memory.
The issue can occur if the highlighted code executes.

See related events 6, 8, and 9.
Show: All events | Only primary events

www.grammatech.com 16

© GrammaTech, Inc. All rights reserved.

16

5/11/2021

Example: Copy-Paste Error

118 void 152 void

119 more_variables () 153 more_arrays ()

120 { 154 {

121 int indx; 155 int indx;

122 int old_count; 156 int old_count;

123 bc_var **old_var; 157 bc_var_array **old_ary;
124 char **old_names; 158 char **old_names;

125 159

126 /* Save the old values. */ 160 /* Save the old values. */
127 old_count = v_count; 161 old_count = a_count;
128 old_var = variables; 162 old_ary = arrays;

129 old_names = v_names; 163 old_names = a_names;
130 164

165 /* Increment by a fixed amount and allocate. */

166 a_count += STORE_INCR;

167 arrays = (bc_var_array **) bc_malloc (a_count*sizeof(bc_var_array *));
168 a_names = (char **) bc_malloc (a_count*sizeof(char *));

169

176 /* Copy the old arrays. */

171 for (indx = 1; indx < old_count; indx++)

131 /* Increment by a fixed amount and allocate. */

132 v_count += STORE_INCR;

133 variables = (bc_var **) bc_malloc (v_count*sizeof(bc_var *));
134 v_names = (char **) bc_malloc (v_count*sizeof(char *));

135

136 /* Copy the old variables. */

137 for (indx = 3; indx < old_count; indx++)

138 variables[indx] = old_var[indx]; g: arrsys[indx] = old_arylindx]s
139
140 /* Initialize the new elements. */ gg /* Initialize the new elements. */
141 for (; indx < v_count; indx++) 176 for (; indx < v_count; indx++)
142 variables[indx] = NULL; 177 ar‘r‘;ys[indx] bt NULL;
143 178
144 /* Free the old elements. */ 179 /* Free the old elements. */
145 if (old_count != @) 180 if (old_count != @)
146 { 181 -
147 free (old_var); 182 free (old_ary);
148 free (old_names); 183 free (old_names);
149 } 184 }
150 } 185 }
www.grammatech.com . © GrammaTech, Inc. All rights reserved.

17

Example: Copy-Paste Error

118 void 152 id
119 more_variables () st
120 153 more_arrays ()
154
121 int indx; —
= 155 int indx;
122 int old;:ount, X 156 int old_count;
123 bc_var **old_var; 157 bc_var_array **old_ary;
124 char **old_names; 158 char **old_names;
125 159 -
126 /* save the old values. */ 160 /* Save the old values. */
127 old_count = v_count; 161 old_count = a_count;
128 old_var = variables; 162 old_ary = arrays;
129 old_names = v_names; 163 old_names = a_names;
130 164
131 /* Increment by a fixed amount and allocate. */ 165 /* Increment by a fixed amount and allocate. */
132 v_count += STORE_INCR; 166 a_count += STORE_INCR;
133 variables = (bc_var **) bc_malloc (v_count*sizeof(bc_var *)); 167 arrays = (bc_var_array **) bc_malloc (a_count*sizeof(bc_var_array *));
134 v_names = (char **) bc_malloc (v_count*sizeof(char *)); 168 a_names = (char **) bc_malloc (a_count*sizeof(char ¥));
135 169
136 /* Copy the old variables. */ 176 /* Copy the old arrays. */)
137 for (indx = 3; indx < old_count; indx++) 171 for (1ndx.: 1; indx < olchount; indx++)
138 variables[indx] = old_var[indx]; 172 arrays[indx] = old_ary[indx];
139 - 173
P 174
140 /* Initialize the new elements. */ . AT ¥
141 for (; indx < v_count; indx++) 1;2 ;orI’(I?t&:é;Zj %'Egi’;i'iis)‘ /
142 variables[indx] = NULL; 2 L 2
143 Copy-Paste Error
144 /* Free the old elements. */ This block of text appears to be a modified copy of the highlighted text. Did you intend to
122 1f{(old_count = 0) consistently change V_count to a_count, including here?
147 free (old_var); 177 arrays[indx] = NULL;
148 free (old_names); 178
149 } 179 /* Free the old elements. */
180 if (old_count != @)
150 } =
et 181 {
182 free (old_ary);
183 free (old_names);
www.grammatech.com 154
g - 18 185 }

18

Example: Concurrency Analysis

2)
Data Race® at input.c:123 No properties have been set. | edit properties
Jump to warning location | warning details...
Show Events | Change View | Options
thread 1 <> thread 2 <>|
EndSearch() /rid0/paul/Examples/gnuchess-5.07/src/util.c input_func() /id0/paul/E; I 5.07/src/input.c
A A
A 147 void EndSearch (int sig __attribute__ ((unused))) A 119 void *input_func(void *arg __attribute__((unused)))
A Event 1: Thread 1 starts here. ¥ hide AEvent3: Thread 2 startshere. 4 ¥ hide
148 Rk Sk K 120
149 * 121 char prompt[MAXSTR] =
150 * User has pressed Ctrl-C. Just set flags TIMEOUT to be true.| 122
151 * 123 while (!(flags & QUIT)) {
ok B
1 §§ \/ridO/pau!/ExampIes/gnuchess-& 07/src/common.h x
A
154 SET (flags, TIMEOUT); 274 #define QUIT 0x0001
\/ridO/paul/ExampIes/gnuchess-.i 07/src/common.h X v
A
" Data Race
12? #dzﬁ"e SET(a,b) t This code reads from global variable flags.
o {) « The other thread writes to flags. See other access.
158 (a) [:_ (b); . . \ « No locks are currently held so a race with the other thread may occur.
159 dbg_printf("Set ox%x\n", (b)); \ « Compilers and processors reorder accesses to shared variables, so even
166} while (@) source code that looks safe can be vulnerable to data races.
> The issue can occur if the highlighted code executes.
Data Race
This code writes to global variable flags. Show: All events | Only primary events
« The other thread reads from flags. See other access. v
« No locks are currently held so a race with the other thread may occur. i ’
« Compilers and processors reorder accesses to shared variables, so even s
looks safe can be vulnerable to data races.
The issue can occur if the highlighted code executes.
Show: All events | Only primary events
v
< »

19

Example: Deviant Behavior Detection

Ignored Return Value® at g-uis c 45

a

create_thumbnail (GIOSchedulerdob *job,
GCancellable *cancellable,
gpointer user_data)

GSimpleAsyncResult *result = user_data;
GFile *file = G_FILE (g_async_result_get source cbject (G ASYNC RESULT
1lFactory *factory:

a5 CAKPiNbUE *pixbuf;
46 guinté4 meime;

g_rile_get_uri (rilef]:
ignored Return Value
The retum value of g_g11e_get_uri () i notchecked orused atall
« IFthe return value can indicate an error the errorwill be ignored fthe highliohtsd code executes:
« The refum value of g_rile
from this the nee
« (Toexemptg file get

Show: All events | Gnly primary events
info = g_file query info (file, ATTRISUTES_FOR THUMBNATL,
C_FILE QUERY INFG_NONE,
NULL,

NULL)

errors

% if (info == NULL)

g_simple async_result_set op res gboolean
goto out;

(result,

FALSE) ;

mrime = g file info_get_attribute uintéd (infe

, _file_info_get_content_type (info));

if (pixbuf !'= NULL)
€

1 gnome_desktop_thumbnail factory save chumbnail (factory, pizbuf,

Jranieri2, P2: Low, Fixed, Memory leak, "Fixed upstream | edit properties

Jump to warning location | warning details:

Show Events | Options

create_t i i d 5.x86_64. D d t5-3.10. tils.c =

(resulr)));

= -_uri () s checked or used mare than 98% of the time acrass alarge number of open source packages. GodeSonar infers
to enforce Tgnored Retum Value checks on all calls to this function, regardiess of the patier of usage in this project
1 {) from the Ignored Return Value check, use configuration file parameter RETURN_CHECKER_IGNORED_FUNCS).

Return Value is assigned to
variable uri

Unusual condition forces
early exit

The value of uri is used, but
not on the path shown!

© GrammaTech, Inc. All rights reserved.

5/11/2021

Example: Taint Analysis (aka Hazardous Information Flow)

5/11/2021

Command InjectionB at s_bsd.c:1436 No properties have been set. edit properties
Jump to warning location | warning details...
Show Events | Options
read_packet() /rid0/paul/Examples/Unreal3.2/src/s_bsd.c
N I
1408 tatic int d_ ket(aClient *cpti fd. t *rfd = 7 y
e et EERERIEIRGHent Roptry fisented /rid0/paul/Examples/Unreal3. 2/include/struct h
1410 int dolen = @, length = @, done; A
1411 A ti t = TSti 3 3
s A Er s R 520 #define DEBUG3_LOG(x) DEBUG3_DOLOG_SYSTEM (x)
1413 I(IsPerson(cptr) & DBufLength(&cptr->recvQ) > 6090)) v /
1414 {
1415 Hook *h;
1416 SET_ERRNO(®) ;
1417 #ifdef USE_SSL
1418 if (cptr->flags & FLAGS_SSL)
1419 Length = ircd_SSL_read(cptr, readbuf, sizeof(reg;
1420 else
1421 #endif i i
a2 T et TS e e T /rid0/paul/Examples/Unregl3.2/include/struct.h
A Event 5: Inside recv(), *readbuf is setto a ntially dangerous value [?]. A .
« This value is used later in a sensitive gafffext. 1382 #define DEBUG3_DOLOG_SYSTEM(x) system(x)
Seerelated event4. A v hide v - -
1423 cptr->lasttime = now;
1424 o if (cptr->lasttime > cptr->since
1425 cptr->since = cptr->lasg#time;
1426 cptr->flags & ~(FLAGS_PINGS®AT | FLAGS_NONL);
1427 *
1428 * If not ready, fake #€ so it isnt closed
1429 */ ’ =
1430 if (length < 0 §/FRRNO == P_ENOULDBLOCK)]/rldO/pau//ExampIes/Unreala2//nc/ude/struct.h
1431 return 1; &
1432 o if (length = @) s " "
1433 £ eurn length; 519 #define DEBUGMODE3_INFO "AB
1434 #ifdef DEBUGMODE3 v
1435 % if (!memcpheadbuf, DEBUGMODE3_INFO, 2)) = .
A 1436 DEBUG3_LOG(readbuf) ; = "11“117
Command Injection 8 ¥ 1 4
Atainted string specifies a process or command line to be executed .
« *readbuf evaluates to *readbufs_psd.c:1422 e ‘) 4 ‘1 '
« *readbuf is tainted by network data. > ‘ lal‘o
The issue can occur if the highlighted code executes.
See related events 5 and 10.
Show: All events | Only primary events
v 21 © GrammaTech, Inc. All rights reserved.
O '
. .
» Customization
www.grammatech.com 2 © GrammaTech, Inc. Al rights reserved.

22

5/11/2021

Why Customize?

= Custom APls

— Adapt built-in functionality for your own purposes
» Corporate Coding Standards

— Naming conventions

— Forbidden constructs
» Domain-specific Rules

— Temporal Properties

— Program Semantics

www.grammatech.com 2 © GrammaTech, Inc. All rights reserved.

23

Customization Mechanisms

Configuration changes
— Best for extending scope of existing checkers.
- E.g., extending leak checking to domain-specific resources
API Modeling
— Write code to educate the analysis about key properties and constraints of the API
— Best for finding violations of rules for using APIs
- E.g., find where preconditions are not satisfied
Program Model

— Access to internal structures such as Abstract Syntax Trees, Control-flow Graphs, Call Graph,
Symbol Tables

— Best for surface-level properties
- E.g., violation of naming conventions
Analysis Visitors
— Callbacks invoked at key points during the core analysis
— Best for semantics-sensitive properties
- E.g., find where values of variables are in an inappropriate range

www.grammatech.com 24 © GrammaTech, Inc. Al rights reserved.

24

5/11/2021

Conclusions @

= Narrow focus on conformance
with coding standards may
blind you to what is really
important

» Use Advanced Static Analysis
to help find the most serious
software defects

www.grammatech.com

25

Key Takeaway @

Real Functional Safety is More
Important than Conformance

Do use a coding and check for vi i
but....

Don’t assume that conformance guarantees safety

v grammatech com < Gramrtecn, i At s

© GrammaTech, Inc. All rights reserved.

25

= My contact info:
— Paul Anderson
— paul@grammatech.com
— http://www.grammatech.com

- T {
Www.grammatechﬁ—_——" © GrammaTech, Inc. All rights reserved.

26

