
5/11/2021

Finding the Serious Bugs that Matter with Advanced 
Static Analysis
Static Analysis Days @ Verifysoft, May 2021

Paul Anderson, VP of Engineering, GrammaTech, Inc.

2www.grammatech.com © GrammaTech, Inc. All rights reserved.

Key Takeaway

Real Functional Safety is More 
Important than Conformance

Do use a coding standard and check for violations,

but….

Don’t assume that conformance guarantees safety

1

2



5/11/2021

3www.grammatech.com © GrammaTech, Inc. All rights reserved.

Overview

 Static Analysis – superficial vs. deep

 The risks of C and C++

 Techniques needed for advanced static analysis

 Examples

 Customization

4www.grammatech.com © GrammaTech, Inc. All rights reserved.

Introduction to Static Analysis

 Infers information about software behavior based on an abstract 
model of the code
– In contrast to dynamic analysis, such as profiling, debugging, testing

 Analyzes code instead of executing it
– So no test cases are needed

 Is usually a two-phase process
– Extract semantic information from source code
– Use information to discover defects or other properties of interest

 This talk is mostly about Advanced static analysis for Bug 
Finding
– As exemplified by CodeSonar®

3

4



5/11/2021

5www.grammatech.com © GrammaTech, Inc. All rights reserved.

Superficial vs. Deep

 Syntactic rules
– Mostly surface-level properties

– Most are decidable

– Many are about improving readability

– Violations generally easy to find

– Low correlation with serious defects
 i.e., unlikely to cause crashing bugs

 Semantic rules
– Mostly about run-time properties

– Usually undecidable

– Powerful analyses are necessary for detection

– High correlation with serious defects
 E.g, leaks, buffer overruns, null pointer exceptions, use after free, uninitialized variables, etc.

Checkable by early-generation tools such as lint, or by some 
modern compilers

Checkable by early-generation tools such as lint, or by some 
modern compilers

Only 9/72 Misra rules were observed to be better than 
random at predicting defects

C. Boogerd and L. Moonen. Assessing the Value of Coding Standards: An Empirical 
Study. In Proceedings of the 24th International Conference on Software Maintenance 

(ICSM), pages 277–286. IEEE Computer Society Press, 2008.

Only 9/72 Misra rules were observed to be better than 
random at predicting defects

C. Boogerd and L. Moonen. Assessing the Value of Coding Standards: An Empirical 
Study. In Proceedings of the 24th International Conference on Software Maintenance 

(ICSM), pages 277–286. IEEE Computer Society Press, 2008.

Many discrete Misra rules cover many instancesMany discrete Misra rules cover many instances

Covered indirectly by a small number of Misra rules. E.g., 
Misra C 2012 Rule 1.3: There shall be no occurrence of undefined or 

critical unspecified behavior

Covered indirectly by a small number of Misra rules. E.g., 
Misra C 2012 Rule 1.3: There shall be no occurrence of undefined or 

critical unspecified behavior

6www.grammatech.com © GrammaTech, Inc. All rights reserved.

Overview

 Static Analysis – superficial vs. deep

 The risks of C and C++

 Techniques needed for advanced static analysis

 Examples

 Customization

5

6



5/11/2021

7www.grammatech.com © GrammaTech, Inc. All rights reserved.

The Two Most Important Rules in Misra C

8www.grammatech.com © GrammaTech, Inc. All rights reserved.

Undefined and Critical Unspecified Behavior

 Undefined Behavior
– E.g.: “The program attempts to modify a string literal.”

– 230 instances in C90/99

– 65 not covered by any other MISRA Rule

 Critical Unspecified Behavior
– What does malloc(0) return?

– 51 instances

– 17 not covered by any other MISRA Rule

 C99 standard:
– 2½ pages of Unspecified behavior

– 13 pages of Undefined behavior

– 6½ pages of Implementation-defined behavior

7

8



5/11/2021

9www.grammatech.com © GrammaTech, Inc. All rights reserved.

Risks of Undefined Behavior

 The Achilles Heel of C programs
 => anything goes, including “Catch fire”!
 Not a rarely-encountered niche
 Source of most serious bugs

– Buffer overruns
– Invalid pointer indirection
– Use after free
– Double free
– Data races
– Division by zero
– Use of uninitialized memory
– Etc….

10www.grammatech.com © GrammaTech, Inc. All rights reserved.

Overview

 Static Analysis – superficial vs. deep

 The risks of C and C++

 Techniques needed for advanced static analysis

 Examples

 Customization

9

10



5/11/2021

11www.grammatech.com © GrammaTech, Inc. All rights reserved.

Advanced Static Analysis Tools

 Tools whose primary purpose is to find 
serious bugs
– Mostly undefined behavior

 Understand semantics, not just syntax

 Based on abstract interpretation
– Using techniques pioneered in high-

assurance hardware design

 API aware
– With knowledge of how library functions 

respond in anomalous circumstances

12www.grammatech.com © GrammaTech, Inc. All rights reserved.

Properties of Advanced Static Analysis Tools

 Precise whole program model
– Derived from parsing the code just as the compiler would

 Flow-sensitive
– Analysis understands order of execution

 Interprocedural
– For tracking data and control flow between procedures

 Context-sensitive
– Analysis understands that different call sites have different 

properties
 Whole-program analysis

– To analyze effects of data and control flow across file boundaries
 Path-sensitive

– Analysis can compute properties of distinct paths
– Infeasible paths are eliminated
– Results shown in terms of paths through the code

 Concurrency sensitive
– Aware of threads and locking

 Learning/statistical analysis
– To find deviations from “normal”

11

12



5/11/2021

13www.grammatech.com © GrammaTech, Inc. All rights reserved.

Overview

 Static Analysis – superficial vs. deep

 The risks of C and C++

 Techniques needed for advanced static analysis

 Examples

 Customization

14www.grammatech.com © GrammaTech, Inc. All rights reserved.

Examples

 All were found in production code

 All are unlikely to be flagged as violations of coding 
standards

13

14



5/11/2021

15www.grammatech.com © GrammaTech, Inc. All rights reserved.

Example: Abstract Interpretation

16www.grammatech.com © GrammaTech, Inc. All rights reserved.

Example: Abstract Interpretation

15

16



5/11/2021

17www.grammatech.com © GrammaTech, Inc. All rights reserved.

Example: Copy-Paste Error

18www.grammatech.com © GrammaTech, Inc. All rights reserved.

Example: Copy-Paste Error

17

18



5/11/2021

19www.grammatech.com © GrammaTech, Inc. All rights reserved.

Example: Concurrency Analysis

20www.grammatech.com © GrammaTech, Inc. All rights reserved.

Example: Deviant Behavior Detection

The value of uri is used, but 
not on the path shown!

Return Value is assigned to 
variable uri

Unusual condition forces 
early exit

19

20



5/11/2021

21www.grammatech.com © GrammaTech, Inc. All rights reserved.

Example: Taint Analysis (aka Hazardous Information Flow)

> AB; rm –rf /

Game
Over!

22www.grammatech.com © GrammaTech, Inc. All rights reserved.

Overview

 Static Analysis – superficial vs. deep

 The risks of C and C++

 Techniques needed for advanced static analysis

 Examples

 Customization

21

22



5/11/2021

23www.grammatech.com © GrammaTech, Inc. All rights reserved.

Why Customize?

 Custom APIs
– Adapt built-in functionality for your own purposes

 Corporate Coding Standards
– Naming conventions

– Forbidden constructs

 Domain-specific Rules
– Temporal Properties

– Program Semantics

24www.grammatech.com © GrammaTech, Inc. All rights reserved.

Customization Mechanisms

 Configuration changes
– Best for extending scope of existing checkers. 
– E.g., extending leak checking to domain-specific resources

 API Modeling
– Write code to educate the analysis about key properties and constraints of the API
– Best for finding violations of rules for using APIs
– E.g., find where preconditions are not satisfied

 Program Model
– Access to internal structures such as Abstract Syntax Trees, Control-flow Graphs, Call Graph, 

Symbol Tables
– Best for surface-level properties
– E.g., violation of naming conventions

 Analysis Visitors
– Callbacks invoked at key points during the core analysis
– Best for semantics-sensitive properties
– E.g., find where values of variables are in an inappropriate range

23

24



5/11/2021

25www.grammatech.com © GrammaTech, Inc. All rights reserved.

Conclusions

 Narrow focus on conformance 
with coding standards may 
blind you to what is really 
important

 Use Advanced Static Analysis 
to help find the most serious 
software defects 

26www.grammatech.com © GrammaTech, Inc. All rights reserved.

Questions?

 My contact info:
– Paul Anderson

– paul@grammatech.com

– http://www.grammatech.com

25

26


