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Key Takeaway

Real Functional Safety is More 
Important than Conformance

Do use a coding standard and check for violations,

but….

Don’t assume that conformance guarantees safety

1

2



5/11/2021

3www.grammatech.com © GrammaTech, Inc. All rights reserved.

Overview

 Static Analysis – superficial vs. deep

 The risks of C and C++

 Techniques needed for advanced static analysis

 Examples

 Customization
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Introduction to Static Analysis

 Infers information about software behavior based on an abstract 
model of the code
– In contrast to dynamic analysis, such as profiling, debugging, testing

 Analyzes code instead of executing it
– So no test cases are needed

 Is usually a two-phase process
– Extract semantic information from source code
– Use information to discover defects or other properties of interest

 This talk is mostly about Advanced static analysis for Bug 
Finding
– As exemplified by CodeSonar®
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Superficial vs. Deep

 Syntactic rules
– Mostly surface-level properties

– Most are decidable

– Many are about improving readability

– Violations generally easy to find

– Low correlation with serious defects
 i.e., unlikely to cause crashing bugs

 Semantic rules
– Mostly about run-time properties

– Usually undecidable

– Powerful analyses are necessary for detection

– High correlation with serious defects
 E.g, leaks, buffer overruns, null pointer exceptions, use after free, uninitialized variables, etc.

Checkable by early-generation tools such as lint, or by some 
modern compilers

Checkable by early-generation tools such as lint, or by some 
modern compilers

Only 9/72 Misra rules were observed to be better than 
random at predicting defects
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The Two Most Important Rules in Misra C
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Undefined and Critical Unspecified Behavior

 Undefined Behavior
– E.g.: “The program attempts to modify a string literal.”

– 230 instances in C90/99

– 65 not covered by any other MISRA Rule

 Critical Unspecified Behavior
– What does malloc(0) return?

– 51 instances

– 17 not covered by any other MISRA Rule

 C99 standard:
– 2½ pages of Unspecified behavior

– 13 pages of Undefined behavior

– 6½ pages of Implementation-defined behavior
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Risks of Undefined Behavior

 The Achilles Heel of C programs
 => anything goes, including “Catch fire”!
 Not a rarely-encountered niche
 Source of most serious bugs

– Buffer overruns
– Invalid pointer indirection
– Use after free
– Double free
– Data races
– Division by zero
– Use of uninitialized memory
– Etc….
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Advanced Static Analysis Tools

 Tools whose primary purpose is to find 
serious bugs
– Mostly undefined behavior

 Understand semantics, not just syntax

 Based on abstract interpretation
– Using techniques pioneered in high-

assurance hardware design

 API aware
– With knowledge of how library functions 

respond in anomalous circumstances
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Properties of Advanced Static Analysis Tools

 Precise whole program model
– Derived from parsing the code just as the compiler would

 Flow-sensitive
– Analysis understands order of execution

 Interprocedural
– For tracking data and control flow between procedures

 Context-sensitive
– Analysis understands that different call sites have different 

properties
 Whole-program analysis

– To analyze effects of data and control flow across file boundaries
 Path-sensitive

– Analysis can compute properties of distinct paths
– Infeasible paths are eliminated
– Results shown in terms of paths through the code

 Concurrency sensitive
– Aware of threads and locking

 Learning/statistical analysis
– To find deviations from “normal”
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Examples

 All were found in production code

 All are unlikely to be flagged as violations of coding 
standards
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Example: Abstract Interpretation
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Example: Abstract Interpretation
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Example: Copy-Paste Error
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Example: Copy-Paste Error
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Example: Concurrency Analysis
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Example: Deviant Behavior Detection

The value of uri is used, but 
not on the path shown!

Return Value is assigned to 
variable uri

Unusual condition forces 
early exit

19

20



5/11/2021

21www.grammatech.com © GrammaTech, Inc. All rights reserved.

Example: Taint Analysis (aka Hazardous Information Flow)

> AB; rm –rf /

Game
Over!
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Why Customize?

 Custom APIs
– Adapt built-in functionality for your own purposes

 Corporate Coding Standards
– Naming conventions

– Forbidden constructs

 Domain-specific Rules
– Temporal Properties

– Program Semantics
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Customization Mechanisms

 Configuration changes
– Best for extending scope of existing checkers. 
– E.g., extending leak checking to domain-specific resources

 API Modeling
– Write code to educate the analysis about key properties and constraints of the API
– Best for finding violations of rules for using APIs
– E.g., find where preconditions are not satisfied

 Program Model
– Access to internal structures such as Abstract Syntax Trees, Control-flow Graphs, Call Graph, 

Symbol Tables
– Best for surface-level properties
– E.g., violation of naming conventions

 Analysis Visitors
– Callbacks invoked at key points during the core analysis
– Best for semantics-sensitive properties
– E.g., find where values of variables are in an inappropriate range
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Conclusions

 Narrow focus on conformance 
with coding standards may 
blind you to what is really 
important

 Use Advanced Static Analysis 
to help find the most serious 
software defects 

26www.grammatech.com © GrammaTech, Inc. All rights reserved.

Questions?

 My contact info:
– Paul Anderson

– paul@grammatech.com

– http://www.grammatech.com
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