

Offenburg (Germany) / Tampere (Finland), 30 June 2016

Please be informed that a new

Testwell CTC++ version 8.0.1 has been released.

Testwell Oy CTC++ System Version 8.0.1

Verifysoft Technology GmbH

30 June 2016

This file describes the changes in successive versions of CTC++.

The latest version is described first.

Version 8.0.1 (30 June 2016)

This revision 8.0.1 of CTC++ has the following version numbers in its

components:

This revision has the following version numbers in its components:

 Preprocessor 8.0.1 (was: 8.0; seen by -h option)

 Run-time libraries 8.0.1 (was: 8.0; seen by 'ident'

 command applied on the library

 in some environments)

 Postprocessor 8.0.1 (was: 8.0; seen by -h option

 and in the listings)

 Header file ctc.h 8.0.1 (was: 8.0; seen in the file)

 Configuration file ctc.ini 8.0.1 (was: 8.0; seen in the file)

 CTC++ to HTML Converter 5.2 (was: 5.1; seen by -h option)

 CTC++ to Excel Converter 3.3 (was: 3.2: seen by -h option)

 CTC++ XML Merger utility 3.1 (was: 3.0; seen by -h option)

 ctc2dat receiver utility 3.4 (was: 3.3; seen by -h option)

and the following version numbers in its Windows platform specific

components:

 Visual Studio IDE Integration

 4.2 (unchanged; seen by clicking the

 Tw-icon in the dialog program

 and selecting "About...")

 CTC++ Wrapper for Windows 3.4 (unchanged: seen by -h option)

and the following version numbers in its Unix platform (Linux, Solaris,

HPUX) specific components:

 CTC++ Wrapper for Unix 1.4 (unchanged; seen by -h option)

Testwell CTC++ Version 8.0.1 – page 2

In the CTC++ preprocessor (ctc):

- Bug fix: Relational operator < was a problem to ctc in template

 instantiations and specialisations, and could in extreme cases cause

 unpredictable consequences, e.g.,

 template <bool b> class X { ... }; ... X< A ...

- Bug fix: A lambda following immediately assignment operator '='

 was not instrumented, when instrumentation mode was multicondition

 coverage, e.g.,

 i = [](){ return 0; };

- Bug fix: A lambda in global scope was not instrumented, if it was

 assigned to a function pointer, e.g.,

 int& (*fpi)(int*) = [](auto* a) -> auto& { return *a; };

- Bug fix: A function or lambda was not instrumented, if there was

 '&&' (C++11) in its trailing return type, e.g,,

 []() -> int && {...}

- Bug fix: When in newer C++ it came allowed to write initialization

 without '=', e.g. 'int buf[100]{0};', ctc no more (erroneously)

 instruments the code like a lambda.

- Bug fix: In some connections, e.g. as a function parameter, ctc

 reported wrongly syntax error of a lambda function that had '[=]'

 capture when instrumentation mode was multicondition coverage, e.g.

 f([=]()->int{ return 1; }());

- New: Some new C++14 features are now properly handled:

 -- binary literals, e.g., 0b010100

 -- digit separator in numeric literals, e.g., 109'208'000

 -- 'auto' in a trailing return type and in a parameter list

- Bug fix: String literal like "AAAxBBB" where x was binary 1 was not

 parsed properly.

- Enhancement: Certain kind of inline assembly functions, supported by

 some compilers, are now handled (recognized, not instrumented, body

 lines kept unchanged) automatically. Such functions look like

 [_][_]asm[_][_] rtype fname(plist){assembly lines}

 Previously RUN_AFTER_CPP/RUN_AFTER_INSTR extra scripts were used to

 handle these cases.

- Enhancement: On primary host platforms (cl and gcc/g++ compilers)

 fine-tuned the default ctc.ini files to work more properly with some

 newly encountered option usages.

- Bug fix: A 'return expression;' statement was not instrumented

 correctly and resulted in a compilation error, if there was

 '#include "otherfile"' immediately after 'return', e.g.,

 return

 #include "otherfile"

 ;

Testwell CTC++ Version 8.0.1 – page 3

- Change/bug fix: Now, if ternary-? appears in a 'typedef ...;'

 construct, it is never instrumented. Instrumentation could cause

 a compile error with some compilers.

- Bug fix: Initializations having 'const' or 'constexpr' qualifier,

 e.g. 'const bool b = aa && bb;', are no longer instrumented. Compile

 error would occur if variable 'b' were later used in a place needing

 the 'const' or 'constexpr' property.

- Bug fix: If there was a 'friend' function in a class and the function

 had also a body, the function remained uninstrumented. Now it is

 instrumented. E.g.,

 class X { ... friend int fr1(...){...} ... };

- Bug fix: GCC's 'asm goto (...);' and 'asm volatile goto (...);'

 are now handled correctly. Previously, they were instrumented like

 normal goto statements (yielding non-compilable code).

- Enhancement: In the configuration parameter EMBED_FUNCTION_NAME,

 wildcard character(s) '*' are now allowed. E.g.,

 -C "EMBED_FUNCTION_NAME=*::close"

In the CTC++ run-time library:

- Change: In ctc.h, at Windows (when 'defined(_WIN32)') the default

 storage class specifier on the CTC++ run-time functions,

 ctc_register_module() etc., is now simply 'extern'. Was previously

 '__declspec(dllimport)'. Now default instrumentation of the code

 files and plain compile of the HOTA targ*.c files link smoothly.

 Previously there was problems e.g. with gcc. Should the HOTA-based

 runtime be a static/dynamic library and need special linker advice,

 there are means to introduce them when instrumenting the code and

 when compiling the HOTA targ*.c files.

- Change: At Linux platform started to use flock() system service to

 additionally ensure exclusiveness in datafile handling (was needed

 in some extreme situations).

In the CTC++ postprocessor (ctcpost):

- Bug fix: no more crash (in some cases) when two reporting options in

 the command e.g. -p and -u. (in future this may become denied...)

- Bug fix: E.g. the following 'if (c1 ? 1 : 0) {...' gave wrong

 statement coverage result, when c1 was evaluated but always to false.

 Silly code as such, but possible.

- Bug fix: When handling header file names, and if they contained

 duplicated directory separators \\ or // in some special cases.

- New: In .txt and .xml profile report there is new bottom line summary

 information "Functions : n". It tells how many instrumented functions

 there are in the reported files altogether. In .xml report, the

 number of functions is additionally reported per each file.

Testwell CTC++ Version 8.0.1 – page 4

In the Visual Studio IDE Integration:

- Bug fix: The "basic integration engine" (vsCTC.exe) is unchanged,

 but at installation time there is improved modify_msbuild_path.bat,

 which enables C# instrumentation in Visual Studio 2013 and later.

In the CTC++ Wrapper for Windows (ctcwrap):

- Documentation fix: The previous v8.0 version.txt said ctcwrap still

 be subversion v3.3, while it was already subversion v3.4.

In CTC++ to HTML converter (ctc2html):

- New: Advanced option --enable-statement_coverage=0/1 added. With it

 statement coverage information can be dropped off from the HTML

 report (becomes simpler, has less "eye-stoppers").

- Enhancement: New heuristic to conclude if a function internal

 conditional code block (#if...#elif...#else...#endif) is in the

 build or not, and determine the line coverage background color

 accordingly. Now if such block has no counters, it is assumed not

 to be in the build (grey letters on white background in the HTML).

 Otherwise the block is painted on the line coverage color (green/red)

 as concluded by the function execution flow analysis. This heuristic

 is not 100% correct, but more correct than before.

- Bug fix: A used -s option now shows properly in the HTML report at

 various directory fields. Example: Assume a file has been instrumented

 so that it is known in Execution Profile Listing as '..\Dir\file.c'.

 Then, ctc2html is run in a directory where that name does not resolve.

 Assume the file really resides at 'F:\Work\Dir\file.c' and with option

 '-s F:\Work\Dir' ctc2html can find the file (and html'ize it). Now in

 the HTML report the file's directory is 'F:\Work\Dir', was '..\Dir'.

- Bug fix: When in a string literal there was something looking like a

 comment start, or the other way round.

- Changes/Bug fixes: Fine-tunings or small corrections how the line

 coverage background color gets determined in various special cases.

In the CTC++ XML Merger utility:

- Enhancement: ctcxmlmerge is now made much faster.

- Change: The report now shows correctly copyright year (reflecting

 when the ctcxmlmerge utility was made), no more the copyright year

 of the first input XML report (reflecting the year when the used

 ctcpost utility was made).

Testwell CTC++ Version 8.0.1 – page 5

In the CTC++ to Excel Converter (ctc2excel):

- Enhancement: Now properly handling input Execution Profile Listings

 that are generated by ctcpost v8.0.1 (having the number of functions

 at the bottom summary).

General:

- CTC++ User's Guide upgraded to v8.0.1 level (ctcug.pdf).

- The 'stack' example changed so that it no more uses uninitialized

 variables. Some debuggers noticed it and stopped example running.

Version 8.0 (27 November 2015)

For this version, please have a look to

http://verifysoft.com/ctcpp80.pdf

Verifysoft Technology GmbH – Technologiepark – In der Spöck 10-12 –-77656 Offenburg (Germany)
Geschäftsführer : Klaus Lambertz - Handelsregister Freiburg HRB 472242

Bank : Sparkasse Offenburg/Ortenau BLZ 664 500 50, Konto : 568 719
IBAN : DE30 6645 0050 0000 5687 19 SWIFT-BIC : SOLADES1OFG

Tel +49 781 127 8118-0 Fax +49 781 6392-029 Email: info@verifysoft.com Internet: http://www.verifysoft.com

http://verifysoft.com/ctcpp80.pdf

