Vé%ifysoft
TECHNOLOGY

P T
T e e
. T

i

Measurement
Fr.R of Software Complexity
7 with Testwell CMT++
Testwell CMTJava

are_complexity_metrics 20121025

www.verifysoft.com

@ Code Complexity Measurements Vérifysoft
TECHNOLOGY

Code Complexity Measurement Tools

Testwell CMT++ for C, C++ (and C#)

Testwell CMTJava for Java
L,;r_ . - |

e
Yol Sasmmn et Comey | Sevew | Serecpmer
“
1w
T fpea 1080
FTANIL . oo Ay B ’ o0
D000-00-33_12. . Trwe-Pome e Oroasude b 5 -
BO000-2 33 Ve Semmor | Ovc 2 -
:- L
s ™
o pd i ™
S AN | 2 =
0
Ve 1y
TR l I e — B
o Miniguret_Tme-Fow-(.G-Saan 3 2900005
* b mg e
Otwa Lt
1m0
s £ v
3 tom
M 5
™
e 5w
vai ~ DN EJ
OCms 2% (ANI -
Comr . 1% (0012 o I..lllll..-___.._
v 2w (e R R R IR R SR]
" N1 DR R e P PO
" o 4 Coremrart Rums vt 3674
-
) RO -
- o ot L% (2900099 o0
Commt % (1% 700 ==
L T LN el Yo
" "~ e | - Sony
: £ g

www.verifysoft.com

@ Code Complexity Measurements Vérifysoft
TECHNOLOGY

Code complexity correlates with the defect
rate and robustness of the application program

Wish to locate complex code

|COMPLEX CODE

DIFFICULT DIFFICULT

TO TEST TO MAINTAIN
Kl
N ERRORRATE, o /
7 DEVELOP.COSTS o

.
=

www.verifysoft.com

@ Code Complexity Measurements

www.verifysoft.com

Code with good complexity:
v’ contains less errors

v is easier and faster to test
v is easier to understand

v’ is easier to maintain

\/eri

Wish to locate complex code

DIFFTONY
TO MAINTAIN

fysoft
TECHNOLOGY

@ Code Complexity Measurements Vérifysoft
TECHNOLOGY

Code complexity metrics are used
to locate complex code

To obtain a high quality software with low cost
of testing and maintenance,
the code complexity should be measured as
early as possible in coding.
-> developer can adapt his code when
recommended values are exceeded.

Wish to locate complex code

COMPLEX CODE

www.verifysoft.com

@ Code Complexity Measurements

www.verifysoft.com

Metrics shown by Testwell CMT++ / CMTlJava:
v’ Lines of Code metrics

v' McCabe Cyclomatic number

v’ Halstead Metrics

v Maintainability Index

Wish to locate complex code

\/erifysoft

TECHNOLOGY

\/er ifysoft
TECHNOLOGY

Lines of code metrics

www.verifysoft.com

@ Lines of code metrics \/erifysoft
TECHNOLOGY

Most traditional measures used to quantify software complexity.
They are simple, easy to count, and very easy to understand.
They do not, however, take into account the intelligence content
and the layout of the code.

Testwell CMT++ calculates the following lines-of-code metrics:

® LOCphy: number of physical lines

® LOCbl: number of blank lines (a blank line inside a comment
block is considered to be a comment line)

® LOCpro: number of program lines (declarations, definitions,
directives, and code)

® LOCcom: number of comment lines

9

www.verifysoft.com

@ Lines of code metrics \/erifysoft
TECHNOLOGY

Recommandations:

Function length should be 4 to 40 program lines.

e A function definition contains at least a prototype,
one line of code, and a pair of braces,
which makes 4 lines.

® A function longer than 40 program lines probably
implements many functions. (Exeption: Functions
containing one selection statement with many
branches)

> Decomposing them into smaler functions often

decreases readability.

9

www.verifysoft.com

@ Lines of code metrics \/erifysoft
TECHNOLOGY

Recommandations:

File length should be 4 to 400 program lines.

® The smallest entity that may reasonably occupy a whole
source file is a function, and the minimum
length of a function is 4 lines.

® Files longer than 400 program lines (10..40 functions)
are usually too long to be understood as a whole.

www.verifysoft.com

@ Lines of code metrics \/erifysoft
TECHNOLOGY

Recommandations:

Comments

® At least 30 % and at most 75 % of a file should be comments.

e If less than one third of a file is comments the file is either
very trivial or poorly explained.

e If more than 75% of a file are comments, the file is not a
program but a document.
(Exeption: In a well-documented header file percentage
of comments may sometimes exceed 75%)

www.verifysoft.com

\/er ifysoft
TECHNOLOGY

McCabe
Cyclomatic Number

@ McCabe Cyclomatic Number \/erifysoft

TECHNOLOGY

The cyclomatic complexity v(G) has been introduced by
Thomas McCabe in 1976.

Measures the number of linearly-independent paths through a
program module (Control Flow).

The McCabe complexity is one of the more widely-accepted
software metrics, it is intended to be independent of language
and language format.

Considered as a broad measure of soundness and confidence
for a program.

9

www.verifysoft.com

@ McCabe Cyclomatic Number \/erifysoft

TECHNOLOGY

v(G) is the number of conditional branches.
v(G) = 1 for a program consisting of only sequential
statements.

For a single function; v(G) is one less than the number of
conditional branching points in the function.

The greater the cyclomatic number is the more execution paths
there are through the function, and the harder it is to understand.

9

www.verifysoft.com

@ McCabe Cyclomatic Number \/erifysoft

TECHNOLOGY

How McCabe Metrics are calculated with CMT++:

Increase of McCabe cyclomatic number v(G) by one:

e if-statement (introduces a new branch to the program)
® |teration constructs such as for- and while-loops

® Each case ...: part in the switch-statement

e Each catch (...) part in a try-block

e Construction exprl ? expr2 : expr3.

9

www.verifysoft.com

@ McCabe Cyclomatic Number \/erifysoft

TECHNOLOGY

In CMT++ the branches generated by conditional compilation
directives are also counted to v(G).

(Even if conditional compilation directives do not add
branches to the control flow of the executable program, they
increase the complexity of the program file that the user sees
and edits.)

v(G) is insensitive to unconditional branches like goto-, returnand
break-statements although they surely increase
complexity.

9

www.verifysoft.com

@ McCabe Cyclomatic Number

www.verifysoft.com

the cyclomatic number by one:

if(...) for (...)
case ...: catch {(...)
[?

#ifdef #ifndef

9

\/erifysoft

=> In summary, the following language constructs increase

while (...)
&&

#if

#elif

TECHNOLOGY

@ McCabe Cyclomatic Number \/erifysoft

TECHNOLOGY

For dynamic testing, the cyclomatic number v(G) is one of the
most important complexity measures.

Because the cyclomatic number describes the control flow
complexity, it is obvious that modules and functions having
high cyclomatic number need more test cases than modules
having a lower cyclomatic number.

Rule:
each function should have at least as many test cases
as indicated by its cyclomatic number.

9

www.verifysoft.com

@ McCabe Cyclomatic Number \/erifysoft

TECHNOLOGY

Recommandations:

® The cyclomatic number of a function should be less than 15.
If a function has a cyclomatic number of 15, there are
at least 15 (but probably more) execution paths
through it.

® More than 15 paths are hard to identify and test.
Functions containing one selection statement with
many branches make up an exception.

® A reasonable upper limit Cyclomatic number of a file is 100.

9

www.verifysoft.com

www.verifysoft.com

\/er ifysoft
TECHNOLOGY

Halstead Metrics

@ Halstead metrics \/erifysoft
TECHNOLOGY

e Developed by Maurice Halstead (sen.)

e Introduced 1977

e Used and experimented extensively since that time
They are one of the oldest measures of
program complexity

=> Strong indicators of code complexity.
=> Often used as a maintenance metric.

9

www.verifysoft.com

@ Halstead metrics

www.verifysoft.com

\/er ifysoft
TECHNOLOGY

Estimated number of bugs

difficulty level, error proneness

effort to implement

program level

program length

number of operators

number of operands

vocabulary size (n1+n2)

number of unique operators

number of unique operands

implementation time / time to understand

volume: size of the implementation of an
algorithm

@ Halstead metrics \/erifysoft
TECHNOLOGY

Halstead’s metrics is based on interpreting the source code
as a sequence of tokens and classifying each token to be an
operator or an operand.

Then is counted

® number of unique (distinct) operators (n1)
® number of unique (distinct) operands (n2)
e total number of operators (N1)

e total number of operands (N2)

All other Halstead measures are derived from these four
qguantities with certain fixed formulas as described later.

9

www.verifysoft.com

@ Halstead metrics \/erifysoft
TECHNOLOGY

Operands:

IDENTIFIER
all identifiers that are not reserved words

TYPENAME

TYPESPEC (type specifiers)

Reserved words that specify

type: bool, char, double, float, int, long, short, signed,
unsigned, void. This class also includes some compiler
specific nonstandard keywords.

CONSTANT

: Character, numeric or string constants.

www.verifysoft.com

@ Halstead metrics \/erifysoft
TECHNOLOGY

Operators (1/2):

SCSPEC (storage class specifiers)
Reserved words that specify storage class: auto, extern, inlin, register,
static, typedef, virtual, mtuable.

TYPE_QUAL (type qualifiers)
Reserved words that qualify type: const, friend volatile.

RESERVED

Other reserved words of C++: asm, break, case, class, continue,
default, delete, do, else, enum, for, goto, if, new, operator, private,
protected, public, return, sizeof, struct, switch, this, union, while,
namespace, using, try, catch, throw, const_cast, static_cast,
dynamic_cast, reinterpret_cast, typeid, template, explicit, true,
@alse, typename. This class also includes some compiler specific

onstandard keywords.

www.verifysoft.com

@ Halstead metrics \/erifysoft

TECHNOLOGY
Operators (2/2):
OPERATOR
! 1= % %= & && ||
&= () * *= + ++ +=
) - -- -= ->
/ /= ; : < << <<=
<= = == > >= >> >>=
? [] A M) -
~ts

www.verifysoft.com

@ Halstead metrics \/erifysoft
TECHNOLOGY

The following control structures case ...: for (...) if (...)
seitch (...) while for (...) and catch (...) are treated in a
special way.

The colon and the parentheses are considered to be a part of
the constructs.

The case and the colon or the for (...) if (...) switch {...)
while for (...) and catch (...) and the parentheses are
counted together as one operator.

V)

www.verifysoft.com

@ Halstead metrics \/erifysoft
TECHNOLOGY

Program length (N)

The program length (N) is the sum of the total number of
operators and operands in the program:

N=N1+N2

Vocabulary size (n)

The vocabulary size (n) is the sum of the number of unique
operators and operands:

n=nl+n2

9

www.verifysoft.com

@ Halstead metrics \/erifysoft
TECHNOLOGY

Program volume (V)
= information content of the program

It is calculated as the program lengh times the 2-base
logarithm of the vocabulary size (n):
V=N *log2(n)

Halstead's volume (V) describes the size of the
implementation of an algorithm.

9

www.verifysoft.com

@ Halstead metrics \/erifysoft
TECHNOLOGY

Recommandations:
The volume of a function should be at least 20 and at most 1000.

® The volume of a parameterless one-line function that is not empty;
is about 20.

® A volume greater than 1000 tells that the function probably does
too many things.

The volume of a file should be at least 100 and at most 8000.

These limits are based on volumes measured for files whose

@OCpro and v(G) are near their recommended limits.

www.verifysoft.com

@ Halstead metrics \/erifysoft
TECHNOLOGY

Difficulty level (D)

The difficulty level or error proneness (D) of the program is
proportional to the number of unique operators in the program.

D is also proportional to the ration between the total number of
operands and the number of unique operands.

(i.e. if the same operands are used many times in the program, it is
more prone to errors)

D=(nl1/2)*(N2/n2)

9

www.verifysoft.com

@ Halstead metrics \/erifysoft
TECHNOLOGY

Program level (L)

The program level (L) is the inverse of the error proneness of
the program.

l.e. A low level program is more prone to errors than a high
level program.

L=1/D

www.verifysoft.com

@ Halstead metrics \/erifysoft
TECHNOLOGY

Effort to implement (E)

The effort to implement (E) or understand a program is
proportional to the volume and to the difficulty level of the
program.

E=V*D

www.verifysoft.com

@ Halstead metrics \/erifysoft
TECHNOLOGY

Time to implement (T)

The time to implement or understand a program (T) is
proportional to the effort.

Halstead has found that dividing the effort by 18 give an
approximation for the time in seconds.

T=E/18

9

www.verifysoft.com

@ Halstead metrics \/erifysoft
TECHNOLOGY

Number of delivered bugs (B)

The number of delivered bugs (B) correlates with the overall
complexity of the software.

E 2/3
3000

Estimate for the number of errors in the implementation.
Delivered bugs in a file should be less than 2.

Experiences have shown that, when programming with C or C++,
a source file almost always contains more errors than B suggests.

9

www.verifysoft.com

@ Halstead metrics \/erifysoft
TECHNOLOGY

B is an important metric for dynamic testing:

The number of delivered bugs approximates the number of
errors in a module.

As a goal at least that many errors should be found from the
module in its testing.

www.verifysoft.com

\/er ifysoft
TECHNOLOGY

Maintainability Index
(M)

(/) Maintainability Index (M) Vérifysoft

TECHNOLOGY

Maintainability Index:
Calculated with certain formulae
from lines-of-code measures,
McCabe measure

and Halstead measures.

Indicates when it becomes cheaper and/or less risky to
rewrite the code instead to change it.

V)

www.verifysoft.com

(/) Maintainability Index (MI) Vérifysoft

TECHNOLOGY

Two variants of Maintainability Index:

=> One that contains comments (Ml) and one that does not
contain comments (Mlwoc).

Actually there are three measures:

e Mlwoc: Maintainability Index without comments
® Mlcw: Maintainability Index comment weight

e MI: Maintainability Index = Mlwoc + Mlcw

V)

www.verifysoft.com

(/) Maintainability Index (MI) Vérifysoft

TECHNOLOGY

Mlwoc =171 - 5.2 * In(aveV) -0.23 * aveG -16.2 * In(aveLOC)

® aveV = average Halstead Volume V per module
® aveG = average extended cyclomatic complexity v(G)
per module
® avelOC = average count of lines LOCphy per module
e perCM = average percent of lines of comments per Module

V)

www.verifysoft.com

(/) Maintainability Index (M) Vérifysoft

TECHNOLOGY

v
»
¥ {

e perCM = average percent of lines of comments per module

Micw = 50 * sin(v2,4*perCM)

/

R ¥ 4
P e
(\‘\“g‘ MI = Miwoc + Micw

9

www.verifysoft.com

(/) Maintainability Index (MI) Vérifysoft

TECHNOLOGY

Maintainability Index (MI, with comments) values:

85 and more Good maintainability
65-85 Moderate maintainability
<65 Difficult to maintain

with really bad pieces of code (big,
uncommented, unstructured) the
Ml value can be even negative

www.verifysoft.com

Testwell CMT++/ CMTJava véri fyaoft

TECHNOLOGY

. et i S

| CMT+» Summaey Report

B S W
N

C ¢ filey//C/Users/ed/cmt/CMTHTML/ indexhtmi » O~ £~

Lavks anpassen] Wetme Lesersichen
N mmmIImmmmnmIIIImmnmIInnnnnnmnmnmm s s - |
* CHT++, Complexity Measures Tool for C/Cee, Version 4.2 ‘ |
. . |
¢ LEXITY MEASURES REPCRY e |
- (@) 007 oy -

T T arsssnsnnnnn

License nctice

SIt MaAN produced at Mon Jan
cmt optiob Users\ed\omt\report.tnp -1
Huml‘ized by At Mon Jan 12 1Teil0 L ‘
cathtnl cptions: -3 Ci:\Usars\ed\cns\repore.o '

The inputs

This is SIMOOARY view, Oc to DEIAILER view. See Anatzugslona.

OVERALL (124 %)

OVERALL STMMARY:

$ Files 40 Functiona
Alarnmed \ Limitse Alarmed \ Limita

gram lines L 0

Yo 0

Comment A 5 100 4
Veolune V 3 &0 h 22
Estimated nunber of bugs 8 3y o 0

Matntarnaht 11w tnfex NT

www.verifysoft.com

Testwell CMT++/ CMTJava véri fyaoft

TECHNOLOGY

_“

Tmlvvpeﬂ-hﬁiw
[Datw Bambeiten Formmt Ansicht

www.verifysoft.com

‘r......u......................-...........-...................-..................... =
. CMT++, Complexity Measures Tool for C/Ce+, version 4.2 * |
o COMPLEXITY MEASURES REPORT . !
. Copyright (c) 1993-2007 Testwell oy ~ },
g L A T LI T T T T T T s T L LT
License notice: This s a Timited period evaluation copy license. ‘
This report was produced at mon Jan 12 17:17:18 2009 }
options: -0 C:\users'ed\cmt\report.txt -f Ci\users\ed\cot'\files. txt ®|
File: ci\users\ed\Deskrop\TestFfles)1inux-2.6.26,8\11nux-2.6.26.8\inft\calibrate.c ‘
{Line Measured objfect v(G) Locphy LoCpro % v B NI |
|

13 Tpj_serup() 1 b 5 92 0,02 121 I |4

31 calibratve_delay direcr() 9 72 42- 1123- 0.39 101 i'ﬂ

104 calibratve_delay_direct() 1 1 - 38 0.01 152 |
114 calibrare_delay() 10 59 47- - 1146~ 0.39 96

172 calibrate,c 20 172 107 3195 1.24 110
[File: ci\users'ed\Desktop\Testriles\1inux-2.6.26, 8\1inux-2.6.26. 8\ inft\do_mounts.c
!L\‘ne Measured object v(G) Locphy Locpro cX v B NI

31 load_ramdisk() 1 5 5 104 0.02 121

38 readonly() 2 7 7 20 0,02 116

46 readwrite() 2 7 7 96 0.02 115 |

57 name_xo_dev_t() 22~ 86 55~ 1832~ 0.57 30

144 root_dev_setup() 1 5 5 88 0.02 121

152 rootwait_setup() 2 7 7 88 0.02 116

163 root_data_setup() 1 5 5 61 0.0 123

170 fs_names_setup() 1 5 5 61 0.0 123

177 root_delay setup() 1 S 5 92 0,02 121

187 t_fs_names() 7 26 24 - 615 0.19 83

214 do_mount_root() 3 14 13 520 0.12 95

229 mount_block_root() g 2 44- 1127~ 0.30 g1

281 mount_nf's_root() 3 10] 186 0.04 106

296 change_floppy() 3 27 27 889 0.22 82

325 moun!_rool(g Bl 28 26 - 47 0.07 98

354 prepare_namespace() 14 2 38 855 0.19 51

406 do_mounts. ¢ 69 406 121 11535~ 3.18- 105

@ Verybench for Testwell CMT++/ CMTJava Véri fysoft

TECHNOLOGY

BT W
-

Verybench:
Graphical front-end for Testwell Complexity Measurement Tools

www.verifysoft.com

@ Verybench for Testwell CMT++/ CMTJava Véri fysoft

TECHNOLOGY

BT W
-

Snapshots Overview
shows the course of the measured source code’s quality
over time by stating the alarm ratios of the latest six snapshots.

www.verifysoft.com

@ Verybench for Testwell CMT++/ CMTJava Veri fysoft

TECHNOLOGY

,
B S w
\

Alarm-Limits Overview

integrates all configurable Alarm Limits into a Radar Chart
for each file and function.

Every axis represents a different alarming metric

with its configurable lower and higher Alarm Limits.

The Radar Chart basically shows the deviation
of a metric’s current value from its lower and higher Alarm Limits.

www.verifysoft.com

@ Verybench for Testwell CMT++/ CMTJava Véri fysoft

TECHNOLOGY

,
LS. .) e
\

;7 77

‘ l ‘ ! L ' 1 ' 1] L - . .)
R B N R FEE SN SRS
’ F PP LS SIS IS ; oy
Viokamw Abwry Lows (17 - 1

Distribution of Metrics
shown on file and function levels for:
V (Program Volume)
c% (Comment Ratio)
LOCpro (Program Lines of Code)
@ v(G) (McCabe” Cyclomatic Number)

In addion B (Estimated Number of Bugs) is shown on file level

www.verifysoft.com

@ Verybench for Testwell CMT++/ CMTJava Véri fysoft

TECHNOLOGY

B S W
1 -
|

Pt 0 Peed SR oy s

2 war woud sk _dre_sobryimus sey_scton X
t 1

ottt Snd "y e o _e

Metrics View
overview over all (both alarming and non-alraming) metrics
of the mesured files and functions

www.verifysoft.com

@ Thank You \/erifysoft

TECHNOLOGY

Vérifysoft
TECHNOLOGY

Thank you for your time!
Your Verifysoft Team

www.verifysoft.com

