
www.verifysoft.com

 Measurement

 of Software Complexity

 with Testwell CMT++

 Testwell CMTJava

en_software_complexity_metrics 20121025

www.verifysoft.com 2

Code Complexity Measurement Tools

Testwell CMT++ for C, C++ (and C#)
Testwell CMTJava for Java

Code Complexity Measurements

www.verifysoft.com 3

Code complexity correlates with the defect
rate and robustness of the application program

Code Complexity Measurements

www.verifysoft.com 4

Code with good complexity:

 contains less errors

 is easier and faster to test

 is easier to understand

 is easier to maintain

Code Complexity Measurements

www.verifysoft.com 5

Code complexity metrics are used
 to locate complex code

To obtain a high quality software with low cost
 of testing and maintenance,
 the code complexity should be measured as
 early as possible in coding.
➔ developer can adapt his code when
 recommended values are exceeded.

Code Complexity Measurements

www.verifysoft.com 6

Metrics shown by Testwell CMT++ / CMTJava:

 Lines of Code metrics

 McCabe Cyclomatic number

 Halstead Metrics

 Maintainability Index

Code Complexity Measurements

www.verifysoft.com 7

Lines of code metrics

www.verifysoft.com 8

Lines of code metrics

Most traditional measures used to quantify software complexity.
They are simple, easy to count, and very easy to understand.
They do not, however, take into account the intelligence content
and the layout of the code.

Testwell CMT++ calculates the following lines-of-code metrics:
● LOCphy: number of physical lines
● LOCbl: number of blank lines (a blank line inside a comment
 block is considered to be a comment line)
● LOCpro: number of program lines (declarations, definitions,
 directives, and code)
● LOCcom: number of comment lines

www.verifysoft.com 9

Lines of code metrics

Recommandations:

Function length should be 4 to 40 program lines.
● A function definition contains at least a prototype,
 one line of code, and a pair of braces,
 which makes 4 lines.
● A function longer than 40 program lines probably
 implements many functions. (Exeption: Functions
 containing one selection statement with many
 branches)
➔ Decomposing them into smaler functions often
decreases readability.

www.verifysoft.com 10

Lines of code metrics

Recommandations:

File length should be 4 to 400 program lines.
● The smallest entity that may reasonably occupy a whole
 source file is a function, and the minimum
 length of a function is 4 lines.
● Files longer than 400 program lines (10..40 functions)
 are usually too long to be understood as a whole.

www.verifysoft.com 11

Lines of code metrics

Recommandations:
Comments
● At least 30 % and at most 75 % of a file should be comments.
● If less than one third of a file is comments the file is either
 very trivial or poorly explained.
● If more than 75% of a file are comments, the file is not a
 program but a document.
 (Exeption: In a well-documented header file percentage
 of comments may sometimes exceed 75%)

www.verifysoft.com 12

McCabe

Cyclomatic Number

www.verifysoft.com 13

McCabe Cyclomatic Number

The cyclomatic complexity v(G) has been introduced by
Thomas McCabe in 1976.

Measures the number of linearly-independent paths through a
program module (Control Flow).

The McCabe complexity is one of the more widely-accepted
software metrics, it is intended to be independent of language
and language format.

Considered as a broad measure of soundness and confidence
for a program.

www.verifysoft.com 14

McCabe Cyclomatic Number

v(G) is the number of conditional branches.
v(G) = 1 for a program consisting of only sequential
statements.

For a single function; v(G) is one less than the number of
conditional branching points in the function.

The greater the cyclomatic number is the more execution paths
there are through the function, and the harder it is to understand.

www.verifysoft.com 15

McCabe Cyclomatic Number

How McCabe Metrics are calculated with CMT++:

Increase of McCabe cyclomatic number v(G) by one:
● if-statement (introduces a new branch to the program)
● Iteration constructs such as for- and while-loops
● Each case ...: part in the switch-statement
● Each catch (...) part in a try-block
● Construction exprl ? expr2 : expr3.

www.verifysoft.com 16

McCabe Cyclomatic Number

In CMT++ the branches generated by conditional compilation
directives are also counted to v(G).
(Even if conditional compilation directives do not add
branches to the control flow of the executable program, they
increase the complexity of the program file that the user sees
and edits.)

v(G) is insensitive to unconditional branches like goto-, returnand
break-statements although they surely increase
complexity.

www.verifysoft.com 17

McCabe Cyclomatic Number

➔ In summary, the following language constructs increase
the cyclomatic number by one:

if (...) for (...) while (...)
case ...: catch (...) &&
|| ? #if
#ifdef #ifndef #elif

www.verifysoft.com 18

McCabe Cyclomatic Number

For dynamic testing, the cyclomatic number v(G) is one of the
most important complexity measures.

Because the cyclomatic number describes the control flow
complexity, it is obvious that modules and functions having
high cyclomatic number need more test cases than modules
having a lower cyclomatic number.

Rule:
each function should have at least as many test cases
as indicated by its cyclomatic number.

www.verifysoft.com 19

McCabe Cyclomatic Number

Recommandations:
● The cyclomatic number of a function should be less than 15.
 If a function has a cyclomatic number of 15, there are
 at least 15 (but probably more) execution paths
 through it.
● More than 15 paths are hard to identify and test.
 Functions containing one selection statement with
 many branches make up an exception.
● A reasonable upper limit Cyclomatic number of a file is 100.

www.verifysoft.com 20

Halstead Metrics

www.verifysoft.com 21

Halstead metrics

● Developed by Maurice Halstead (sen.)
● Introduced 1977
● Used and experimented extensively since that time
 They are one of the oldest measures of
 program complexity

➔ Strong indicators of code complexity.
➔ Often used as a maintenance metric.

www.verifysoft.com 22

Halstead metrics

B Estimated number of bugs
D difficulty level, error proneness
E effort to implement
L program level
N program length
N1 number of operators
N2 number of operands
n vocabulary size (n1+n2)
n1 number of unique operators
n2 number of unique operands
T implementation time / time to understand
V volume: size of the implementation of an
 algorithm

www.verifysoft.com 23

Halstead metrics

Halstead´s metrics is based on interpreting the source code
as a sequence of tokens and classifying each token to be an
operator or an operand.

Then is counted
● number of unique (distinct) operators (n1)
● number of unique (distinct) operands (n2)
● total number of operators (N1)
● total number of operands (N2)

All other Halstead measures are derived from these four
quantities with certain fixed formulas as described later.

www.verifysoft.com 24

Halstead metrics

Operands:

IDENTIFIER
all identifiers that are not reserved words

TYPENAME

TYPESPEC (type specifiers)
Reserved words that specify
type: bool, char, double, float, int, long, short, signed,
unsigned, void. This class also includes some compiler
specific nonstandard keywords.

CONSTANT
Character, numeric or string constants.

www.verifysoft.com 25

Halstead metrics

Operators (1/2):

SCSPEC (storage class specifiers)
Reserved words that specify storage class: auto, extern, inlin, register,
static, typedef, virtual, mtuable.

TYPE_QUAL (type qualifiers)
Reserved words that qualify type: const, friend volatile.

RESERVED
Other reserved words of C++: asm, break, case, class, continue,
default, delete, do, else, enum, for, goto, if, new, operator, private,
protected, public, return, sizeof, struct, switch, this, union, while,
namespace, using, try, catch, throw, const_cast, static_cast,
dynamic_cast, reinterpret_cast, typeid, template, explicit, true,
false, typename. This class also includes some compiler specific
nonstandard keywords.

www.verifysoft.com 26

Halstead metrics

Operators (2/2):

OPERATOR
! != % %= & && ||
&= () * *= + ++ +=
, - -- -= ->
/ /= : :: < << <<=
<= = == > >= >> >>=
? [] ^ ^= { } | |=
~ts

www.verifysoft.com 27

Halstead metrics

The following control structures case ...: for (...) if (...)
seitch (...) while for (...) and catch (...) are treated in a
special way.

The colon and the parentheses are considered to be a part of
the constructs.

The case and the colon or the for (...) if (...) switch (...)
while for (...) and catch (...) and the parentheses are
counted together as one operator.

www.verifysoft.com 28

Halstead metrics

Program length (N)
The program length (N) is the sum of the total number of
operators and operands in the program:
N = N1 + N2

Vocabulary size (n)
The vocabulary size (n) is the sum of the number of unique
operators and operands:
n = n1 + n2

www.verifysoft.com 29

Halstead metrics

Program volume (V)
= information content of the program

It is calculated as the program lengh times the 2-base
logarithm of the vocabulary size (n):
V = N * log2(n)

Halstead's volume (V) describes the size of the
implementation of an algorithm.

www.verifysoft.com 30

Halstead metrics

Recommandations:

The volume of a function should be at least 20 and at most 1000.

● The volume of a parameterless one-line function that is not empty;
 is about 20.

● A volume greater than 1000 tells that the function probably does
 too many things.

The volume of a file should be at least 100 and at most 8000.

These limits are based on volumes measured for files whose
LOCpro and v(G) are near their recommended limits.

www.verifysoft.com 31

Halstead metrics

Difficulty level (D)

The difficulty level or error proneness (D) of the program is
proportional to the number of unique operators in the program.

D is also proportional to the ration between the total number of
operands and the number of unique operands.
(i.e. if the same operands are used many times in the program, it is
more prone to errors)

D = (n1 / 2) * (N2 / n2)

www.verifysoft.com 32

Halstead metrics

Program level (L)
The program level (L) is the inverse of the error proneness of
the program.
I.e. A low level program is more prone to errors than a high
level program.

L = 1 / D

www.verifysoft.com 33

Halstead metrics

Effort to implement (E)

The effort to implement (E) or understand a program is
proportional to the volume and to the difficulty level of the
program.

E = V * D

www.verifysoft.com 34

Halstead metrics

Time to implement (T)

The time to implement or understand a program (T) is
proportional to the effort.

Halstead has found that dividing the effort by 18 give an
approximation for the time in seconds.

T = E / 18

www.verifysoft.com 35

Halstead metrics

Number of delivered bugs (B)

The number of delivered bugs (B) correlates with the overall
complexity of the software.

 B =
E 2/3

3000

Estimate for the number of errors in the implementation.
Delivered bugs in a file should be less than 2.

Experiences have shown that, when programming with C or C++,
a source file almost always contains more errors than B suggests.

www.verifysoft.com 36

Halstead metrics

B is an important metric for dynamic testing:

The number of delivered bugs approximates the number of
errors in a module.

 As a goal at least that many errors should be found from the
module in its testing.

www.verifysoft.com 37

Maintainability Index

(MI)

www.verifysoft.com 38

Maintainability Index (MI)

Maintainability Index:
Calculated with certain formulae
from lines-of-code measures,
McCabe measure
and Halstead measures.

Indicates when it becomes cheaper and/or less risky to
rewrite the code instead to change it.

www.verifysoft.com 39

Maintainability Index (MI)

Two variants of Maintainability Index:
➔ One that contains comments (MI) and one that does not
contain comments (MIwoc).

Actually there are three measures:
● MIwoc: Maintainability Index without comments
● MIcw: Maintainability Index comment weight
● MI: Maintainability Index = MIwoc + MIcw

www.verifysoft.com 40

Maintainability Index (MI)

MIwoc = 171 - 5.2 * ln(aveV) -0.23 * aveG -16.2 * ln(aveLOC)

● aveV = average Halstead Volume V per module
● aveG = average extended cyclomatic complexity v(G)
 per module
● aveLOC = average count of lines LOCphy per module
● perCM = average percent of lines of comments per Module

www.verifysoft.com 41

Maintainability Index (MI)

MIcw = 50 * sin(√2,4*perCM)

● perCM = average percent of lines of comments per module

MI = MIwoc + MIcw

www.verifysoft.com 42

Maintainability Index (MI)

Maintainability Index (MI, with comments) values:

85 and more Good maintainability
65-85 Moderate maintainability
< 65 Difficult to maintain
 with really bad pieces of code (big,
 uncommented, unstructured) the
 MI value can be even negative

www.verifysoft.com 43

Testwell CMT++/ CMTJava

www.verifysoft.com 44

Testwell CMT++/ CMTJava

www.verifysoft.com 45

Verybench for Testwell CMT++/ CMTJava

Verybench:
Graphical front-end for Testwell Complexity Measurement Tools

www.verifysoft.com 46

Verybench for Testwell CMT++/ CMTJava

Snapshots Overview
shows the course of the measured source code´s quality
over time by stating the alarm ratios of the latest six snapshots.

www.verifysoft.com 47

Verybench for Testwell CMT++/ CMTJava

Alarm-Limits Overview
integrates all configurable Alarm Limits into a Radar Chart
for each file and function.
Every axis represents a different alarming metric
with its configurable lower and higher Alarm Limits.

The Radar Chart basically shows the deviation
of a metric´s current value from its lower and higher Alarm Limits.

www.verifysoft.com 48

Verybench for Testwell CMT++/ CMTJava

Distribution of Metrics
shown on file and function levels for:
 V (Program Volume)
 c% (Comment Ratio)
 LOCpro (Program Lines of Code)
 v(G) (McCabe´ Cyclomatic Number)
In addion B (Estimated Number of Bugs) is shown on file level

www.verifysoft.com 49

Verybench for Testwell CMT++/ CMTJava

Metrics View
overview over all (both alarming and non-alraming) metrics
of the mesured files and functions

www.verifysoft.com 50

Thank you for your time!
 Your Verifysoft Team

Thank You

